cvechessian
Vector Hessian of a multivariate, vector-valued function using the central difference approximation.
Back to Numerical Differentiation Toolbox Contents.
Contents
Syntax
H = cvechessian(f,x0) H = cvechessian(f,x0,h)
Description
H = cvechessian(f,x0) numerically evaluates the vector Hessian of
with respect to
at
using the central difference approximation with a default relative step size of
, where
is the machine zero.
H = cvechessian(f,x0,h) numerically evaluates the vector Hessian of
with respect to
at
using the central difference approximation with a user-specified relative step size
.
Input/Output Parameters
| Variable | Symbol | Description | Format | |
| Input | f | multivariate, vector-valued function ( |
1×1 function_handle |
|
| x0 | evaluation point | n×1 double |
||
| h | (OPTIONAL) relative step size (defaults to |
1×1 double |
||
| Output | H | vector Hessian of |
n×n×m double |
Note
- This function requires
evaluations of
.
Example
Approximate the vector Hessian of

at
using the cvechessian function, and compare the result to the true result of

where


Approximating the Hessian,
f = @(x) [x(1)^5*x(2)+x(1)*sin(x(2))^3;
x(1)^3+x(2)^4-3*x(1)^2*x(2)^2];
x0 = [5;8];
H = cvechessian(f,x0)
H(:,:,1) =
1.0e+04 *
2.0000 0.3125
0.3125 -0.0014
H(:,:,2) =
-353.9999 -480.0000
-480.0000 617.9999
Defining the true vector Hessian,
H_true = zeros(2,2,2);
H_true(:,:,1) = [20*5^3*8,5*5^4+3*sin(8)^2*cos(8);5*5^4+3*sin(8)^2*...
cos(8),6*5*sin(8)*cos(8)^2-3*5*sin(8)^3];
H_true(:,:,2) = [-354,-480;-480,618];
Calculating the errors,
error = H-H_true
error(:,:,1) =
1.0e-03 *
0.0072 0.2459
0.2459 0.1293
error(:,:,2) =
1.0e-03 *
0.0920 -0.0388
-0.0388 -0.1051