
Aerospace Simulation

Tamas Kis | tamas.a.kis@outlook.com



Tamas Kis
https://tamaskis.github.io

Copyright © 2023 Tamas Kis.

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/ or send a letter
to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

https://tamaskis.github.io
http://creativecommons.org/licenses/by-nc-sa/4.0/


Contents

Contents iii

List of Algorithms iv

I State Parameterization 1

1 Mathematical Vectors 2
1.1 Mathematical Vectors and Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Coordinate Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Mathematical Vectors in a Coordinate System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Labeling a Vector With a Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4.1 Unit Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 The Basis Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5.1 The Standard Basis Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6 Change of Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6.1 Generalized Change of Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6.2 Standard Change of Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.7 Orthogonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.7.1 Orthogonal Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.7.2 Product of Orthogonal Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.7.3 Orthonormal Bases and Cartesian Coordinate Systems . . . . . . . . . . . . . . . . . . . . . 11

1.8 Rotation Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.8.1 Passive vs. Active Rotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.8.2 Elementary Rotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.8.3 Properties of Elementary Rotation Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.8.4 Sequential Rotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.8.5 Properties of Sequential Rotation Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

II Kinematics 20

III Kinetics 21

IV Appendices 22

A Test Cases 23
A.1 Rotation Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

A.1.1 Elementary Rotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
A.1.2 Sequential Rotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

References 25



List of Algorithms

Algorithm 1 rot1 Rotation matrix for a passive rotation about the 1st axis . . . . . . . . . . . . . . . 14
Algorithm 2 rot2 Rotation matrix for a passive rotation about the 2nd axis . . . . . . . . . . . . . . 14
Algorithm 3 rot3 Rotation matrix for a passive rotation about the 3rd axis . . . . . . . . . . . . . . 14
Algorithm 4 rot321 Rotation matrix for the 3-2-1 rotation sequence . . . . . . . . . . . . . . . . . . . . . . 17
Algorithm 5 rot313 Rotation matrix for the 3-1-3 rotation sequence . . . . . . . . . . . . . . . . . . . . . . 18



PART I
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1
Mathematical Vectors

1.1 Mathematical Vectors and Matrices

In mathematics, a matrix is a rectangular array of numbers. An example of a matrix is

A =

[
1 2 3
6 0 5

]
∈ R2×3

In this text, we refer to such a matrix as a mathematical matrix.

Convention 1: Notation for mathematical matrices.

Mathematical matrices are written using uppercase, upright, boldface symbols. For
example, a real-valued matrix of size m× n may be written as

A ∈ Rm×n

In mathematics, a vector is a list of numbers. An example of a vector is

v =

12
3

 ∈ R3

In this text, we refer to such a vector as a mathematical vector. Note that it is standard to assume that all vectors
are column vectors. If a vector is arranged in a row, we refer to it explicitly as a row vector, and denote its size
differently. For example, an n-dimensional real-valued row vector is denote as being a member of the vector space
R1×n. An example of a row vector is

v =
[
1 2 3

]
∈ R1×n

Convention 2: Notation for mathematical vectors.

Mathematical vectors are written using lowercase, upright, boldface symbols. For ex-
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ample, a real-valued vector of length n may be written as

v ∈ Rn

Real-valued mathematical vectors have both a magnitude and a direction. The magnitude of mathematical
vector v is calculated using the 2-norm.

∥v∥ = magnitude of v (1.1)

The 2-norm of a vector is defined as
∥v∥ =

√
vTv (1.2)

where the “T ” denotes the transpose operation.
To describe the direction of a vector, we use unit vectors. A unit vector is a vector of magnitude 1. Therefore,

If we multiply a scalar quantity by a unit vector, we get a vector whose magnitude is equal to the scalar and whose
direction is parallel to the unit vector’s. The unit vector in the direction of v is defined as

v̂ =
v

∥v∥
= direction of v (1.3)

Convention 3: Notation for the magnitude of a mathematical vector.

The magnitude of mathematical vectors are written using the italic, non-boldface ver-
sion of the same symbol. For example, the magnitude of v is written as v.

By rearranging Eq. (1.3), we can write a vector v in terms of its magnitude and direction.

v = ∥v∥ v̂ (1.4)

1.2 Coordinate Systems

A coordinate system is a system that uses one or more numbers (i.e. coordinates) to determine the position of
some geometric element with respect to that coordinate system. We use the following convention to name coordinate
systems:

Convention 4: Naming coordinate systems.

Consider a coordinate system with origin O and axes x1, ..., xn. We refer to this coor-
dinate system as Ox1...xn.

As a visual example, consider the three-dimensional coordinate system Ox1x2x3 is illustrated in Fig. 1.1.
A coordinate system is defined using an ordered basis. Let X be the ordered basis defining the Ox1...xn

coordinate system. Then
X = (x̂1, ..., x̂n) = ordered basis (1.5)

x̂1, ..., x̂3 are referred to as basis vectors since they define an ordered basis. Note that all basis vectors are unit vectors,
i.e. they all a of have magnitude 1.

∥x̂1∥ = · · · = ∥x̂n∥ = 1 (1.6)
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O

x1

x2

x3

Figure 1.1: Ox1x2x3 coordinate system.

Also note that all basis vectors have dimension equal to the dimension of the coordinate system they collectively
define. For an n-dimensional coordinate system,

x̂i ∈ Rn ∀ i = 1, ..., n (1.7)

In our three-dimensional example, the tails of x̂1, x̂2, and x̂3 are all located at the origin O, while their heads
points in the directions of the x1, x2, and x3 axes, respectively. The Ox1x2x3 coordinate system together, with its
basis vectors x̂1, x̂2, and x̂3, is depicted in Fig. 1.2.

O

x1

x2

x3

x̂1
x̂2

x̂3

Figure 1.2: Ox1x2x3 coordinate system with basis vectors.

1.3 Mathematical Vectors in a Coordinate System

Consider an arbitrary, n-dimensional mathematical vector, v ∈ Rn. Let X = (x1, ...,xn) be an ordered basis defining
the Ox1...xn coordinate system. Then v can be written in terms of the basis vectors of the Ox1...xn coordinate system
as

v =

n∑
i=1

vxi x̂i (1.8)

where vxi
is the component or coordinate of v with respect to the xi axis (i.e. in the direction defined by x̂i).

As an example, consider a three-dimensional mathematical vector, v ∈ R3. Let’s place v in the three-
dimensional coordinate system Ox1x2x3 such that its tail is located at the origin. Vector v has components/coordinates
v1, v2, and v3 directed along the three coordinate axes, defined by the basis vectors x̂1, x̂2, and x̂3, respectively. For
this example, v can be written in terms of the basis vectors defining Ox1x2x3 as

v = vx1
x̂1 + vx2

x̂2 + vx3
x̂3
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Figure 1.3: Mathematical vector in a coordinate system.

1.4 Labeling a Vector With a Basis

Recall that in the previous section we wrote the vector v ∈ Rn as a linear combination of the basis vectors of the
ordered basis X = (x̂1, ..., x̂n).

v =

n∑
i=1

vix̂i

However, X may not be the only ordered basis for Rn; in general, any set of unit vectors that span Rn can be an
ordered basis for Rn. Since a mathematical vector is at its core just a list of numbers, it is important to label which
basis its components are resolved or expressed in if there are multiple bases. In this case, we would write

vX =

n∑
i=1

vxi
x̂i for the ordered basis X = (x̂1, ..., x̂n) (1.9)

Convention 5: Labeling a vector with a basis.

A mathematical vector defined with respect to an ordered basis should be subscripted
with the symbol representing the ordered basis. For example, a mathematical vector
defined with respect to the ordered basis X should be denoted

vX

If the vector already has a subscript, the basis symbol should be the last subscript. For
example, if a vector already has the subscript “ex”, it should be denoted

vex,X

1.4.1 Unit Vectors

Just like regular vectors, we can label unit vectors with a basis as well. This implies that we can define an ordered
basis for one coordinate system using basis vectors resolved in another coordinate system.
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As an example, consider the ordered basis X = (x̂Y
1 , ..., x̂

Y
n ). Note that the basis vectors of X are resolved

with respect to another ordered basis, Y .

Convention 6: Basis vectors resolved with respect to the basis they define.

Consider an ordered basis X = (x̂1,X , ..., x̂n,X). To avoid cluttering notation, we write
this ordered basis as

X = (x̂1, ..., x̂n)

In other words, if a basis is defined using basis vectors resolved in the basis itself, then
we do not label the basis vectors with a basis.

(x̂1, ..., x̂n) ≡ (x̂1,X , ..., x̂n,X)

1.5 The Basis Matrix

Consider a coordinate system Ox1...xn defined using the ordered basis X = (x̂1,U , ..., x̂n,U ). Note that the basis
vectors of X are resolved with respect to some universal basis, U = (û1, ..., ûn). A vector resolved in the coordinate
system defined by the basis U can be written as a linear combination of the basis vectors of X as

vU =

n∑
i=1

vxi x̂i,U = vx1 x̂1,U + · · ·+ vxn x̂n,U (1.10)

Note that x̂i,U is essentially x̂i = x̂X
i projected onto ûi. Thus, each scalar xi represents a coordinate on the ith axis

of the coordinate system defined by the ordered basis U .
Equivalently, we can write Eq. (1.10) using matrix algebra as

vU =
[
x̂1,U · · · x̂n,U

] vx1

...
vxn

 (1.11)

Let’s define the basis matrix of X with respect to U as

XU =
[
x̂1,U · · · x̂n,U

]
(1.12)

Note that since x̂i ∈ Rn ∀ i = 1, ..., n, we have that

XU ∈ Rn×n (1.13)

1.5.1 The Standard Basis Matrix

Consider the case where the basis vectors of an ordered basis are defined with respect to the basis itself. Mathemati-
cally, if we have n-dimensional ordered basis X , then

X = (x̂1, ..., x̂n)

It is important to recall Convention 6, which notes that this notation is shorthand for X = (x̂1,X , ..., x̂n,X).
A vector resolved in the coordinate system defined by the basis X can be written in terms of the basis vectors

of X as
vX = vx1

x̂1 + · · ·+ vxn
x̂n
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Equivalently, we can write this using matrix algebra as

vX =
[
x̂1 · · · x̂n

] vx1

...
vxn


Let’s define the standard basis matrix of a basis with respect to itself as

XX =
[
x̂1 · · · x̂n

]
Using the standard basis matrix X, we can write vX as

vX = X

vx1

...
vxn


By definition, we know that (vx1

, ..., vxn
)T = vX . Thus, we have

vX = XXvX

which implies that the standard basis matrix is just the identity matrix, In×n.

XX = In×n for the ordered basis X = (x̂1, ..., x̂n) (1.14)

1.6 Change of Basis

The developments in this section are compiled from [4, pp. 163–172] and [7, pp. 33–
34].

Consider two separate ordered basis, X and Y .

X = (x̂1, ..., x̂n)

Y = (ŷ1, ..., ŷn)

Supposed the tails of all the basis vectors are all located at the same point, O. They then define the coordinate systems
Ox1...xn and Oy1...yn, both with origin O.

Goals:
1. Resolve v in the Oy1...yn coordinate system, given its coordinates in the

Ox1...xn coordinate system. This operation represents the change of basis from
X to Y ; we obtain vY given vX .

2. Resolve v in the Ox1...xn coordinate system, given its coordinates in the
Oy1...yn coordinate system. This operation represents the change of basis from
Y to X; we obtain vX given vY .

1.6.1 Generalized Change of Basis

Recall Eq. (1.11) defining vU in terms of the basis matrix of X with respect to U , where X = (x̂1,U , ..., x̂n,U ) is
some ordered basis and U = (û1, ..., ûn) is a universal ordered basis.

vU =
[
x̂1,U · · · x̂n,U

]︸ ︷︷ ︸
XU (Eq. (1.12))

vx1

...
vxn


︸ ︷︷ ︸

vX
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As noted in the equation above, the first matrix is just the basis matrix of X with respect to U , while the vector is the
vector v resolved with respect to the ordered basis X . Thus, we have

vU = XUvX (1.15)

Similarly, we could write vU in terms of vY and YU , where Y = (ŷ1,U , ..., ŷn,U ) is another ordered basis with basis
vectors resolved with respect to the universal ordered basis U .

vU = YUvY (1.16)

From Eqs. (1.15) and (1.16), we have
XUvX = YUvY (1.17)

Solving for vY by left-multiplying both sides by Y−1
U ,

vY = Y−1
U XUvX

Below, we more formally define this change of basis.

Formal Definitions

Consider two separate ordered basis, X and Y , which both have basis vectors resolved with respect to a third, universal,
ordered basis U .

X = (x̂1,U , ..., x̂n,U )

Y = (ŷ1,U , ..., ŷn,U )

U = (û1, ..., ûn)

Suppose we know the basis vectors of X and Y resolved with respect to U .

XU =
[
x̂1,U · · · x̂n,U

]
YU =

[
ŷ1,U · · · ŷn,U

]
The generalized change of basis from X to Y is defined as

vY = Y−1
U XUvX (generalized change of basis X → Y ) (1.18)

Similarly, the generalized change of basis from Y to X is defined as

vX = X−1
U YUvY (generalized change of basis Y → X) (1.19)

1.6.2 Standard Change of Basis

From Eq. (1.18), we know that the generalized change of basis from X to Y is

vY = (YU )
−1XUvX

where U = (û1, ..., ûn) is some universal basis that both X and Y are defined with respect to. Now, let’s consider the
case where U = Y , which essentially means that we have the basis vectors of X resolved with respect to the basis Y .

vY =
−1

YY︸︷︷︸
In×n

XY vX

Note that YY is a standard basis matrix, which we showed in Section 1.5.1 is just the identity matrix. Therefore, this
change of basis reduces to

vY = XY vX
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We can perform the same procedure with Eq. (1.19), setting U = X , to find

vX = YXvY

Below, we more formally define this change of basis.

Formal Definitions

Consider two separate ordered basis, X and Y . Assume that we have the vector vX resolved with respect to X ,
together with the basis vectors of Y resolved with respect to X . The basis vectors of Y form the basis matrix

YX =
[
ŷ1,X · · · ŷn,X

]
The standard change of basis from X to Y is defined as

vY = XY vX (standard change of basis X → Y ) (1.20)

Similarly, assume that we have the vector vY resolved with respect to Y , together with the basis vectors of X
resolved with respect to Y . The basis vectors of X form the basis matrix

XY =
[
x̂1,Y · · · x̂n,Y

]
The standard change of basis from Y to X is defined as

vX = YXvY (standard change of basis Y → X) (1.21)

Note that we can also obtain vX by left-multiplying both sides of Eq. (1.20) by X−1
Y .

vY = XY vX → X−1
Y vY = X−1

Y XY vX → X−1
Y vY = vX

∴ vX = X−1
Y vY

Comparing this result with Eq. (1.21) implies that

YX = X−1
Y (1.22)

Repeating the same process but this time left-multiplying both sides of Eq. (1.21) by Y−1
X and then comparing the

result with Eq. (1.20) would result in

XY = Y−1
X (1.23)

1.7 Orthogonality

1.7.1 Orthogonal Matrices

Orthogonal Vectors

Two vectors, v1,v2 ∈ Rn, are said to be orthogonal if their inner product is 0.

vT
1 v2 = 0 → v1 ∈ Rn and v2 ∈ Rn are orthogonal (1.24)
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Orthonormal Sets

An orthonormal set is a set of unit vectors that are all orthogonal to one another. Let U = {û1, ..., ûn} be a set of n
vectors such that

ûT
i ûj = δij

where

δij =

{
1, i = j

0, i ̸= j

Then U is an orthonormal set.
Note that the condition above implies that all the vectors are both orthogonal to one another and have magnitude

1. For the case where i ̸= j, ûT
i ûj = 0 implies that the vectors are orthogonal. For the case where i = j, ûT

i ûi = 1

implies that ûi is a unit vector, since ûT
i ûi = ∥ûi∥2.

Orthogonal Matrices

A square matrix A ∈ Rn×n is said to be orthogonal if its column vectors form an orthonormal set. Let ai be the ith
column vector of A.

A =
[
a1 · · · ai · · · an

]
A is an orthogonal matrix if

∥ai∥ = 1 ∀ i = 1, .., n

aTi aj = 0 ∀ i, j = 1, .., n, i ̸= j

Properties of Orthogonal Matrices

Consider multiplying A by its transpose from the left. Writing the matrices in terms of their column vectors,

ATA =
[
a1 · · · an

]T [
a1 · · · an

]
=

a
T
1
...
aTn

 [
a1 · · · an

]
=


aT1 a1 aT1 a2 · · · aT1 an
aT2 a1 aT2 a2 · · · aT2 an
...

...
. . .

...
aTna1 aTna2 · · · aTnan



=


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


It follows that an orthogonal matrix has the property

ATA = AAT = In×n (1.25)

where In×n is the n× n identity matrix.
We also know that A−1A = AA−1 = In×n, which when compared to Eq. (1.25) yields the property

A−1 = AT (1.26)

Eq. (1.26) is an extremely important property because it is computationally much more efficient to calculate the
transpose of a matrix than its inverse.

Next, consider the determinant of AAT . We know that

det (In×n) = 1
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By the definition of the determinant, we know that

det (AAT ) = det (A) det (AT )

Since det (AT ) = det (A) for any square matrix A,

det (AAT ) = det (A)
2

Since AAT = In×n,
det (In×n) = det (A)

2 → det (A)
2
= 1

|det (A)| = 1 (1.27)

In Eq. (1.27), |·| denotes an absolute value while det (·) denotes a determinant; this is essential to note because |·| is
often used to denote the determinant [5].

If a matrix is orthogonal, its determinant is either −1 or 1. However, if the determinant
of a square matrix is −1 or 1, it does not imply that the matrix is orthogonal [2].

Now, consider two vectors x,y ∈ Rn and the orthogonal matrix A ∈ Rn×n. Taking the inner product of Ax
with Ay,

(Ax)T (Ay) = xT ATA︸ ︷︷ ︸
In×n

y

(Ax)T (Ay) = xTy (1.28)

In the case that x = y,
(Ax)TAx = xTx = ∥x∥22

We also know that
(Ax)T (Ax) = ∥Ax∥2

Thus, we have [4, pp. 263–268][8, p. 15]
∥Ax∥ = ∥x∥ (1.29)

1.7.2 Product of Orthogonal Matrices

Consider two orthogonal matrices A and B. Their product is given by AB. Thus, from Eq. (1.26), we know that if
(AB)T (AB) = I, then the matrix product AB is also orthogonal.

(AB)T (AB) =
(
BTAT

)
(AB) = BT

(
ATA

)
B = BT IB = BTB = I

Thus, the product of two orthogonal matrices is also an orthogonal matrix [11].

1.7.3 Orthonormal Bases and Cartesian Coordinate Systems

Consider an ordered basis X = (x̂1, ..., x̂n) with a corresponding basis matrix

X =
[
x̂1 · · · x̂n

]
If X is an orthogonal matrix, or equivalently, if all the basis vectors defining X are mutually orthogonal, then X is an
ordered basis for a Cartesian coordinate system.

Let’s consider the case where X and Y are both orthonormal ordered bases defining coordinate systems. Then
the generalized change of basis formulas from Section 1.6.1 can be simplified to

vY = YT
UXUvX (generalized change of basis X → Y where Y is an orthonormal basis) (1.30)
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vX = XT
UYUvY (generalized change of basis Y → X where X is an orthonormal basis) (1.31)

Additionally, we know that XY and YX are both orthogonal matrices since the basis vectors that comprise them form
orthonormal sets. Thus, we can replace the inverses in Eqs. (1.22) and (1.23) to obtain

YX = XT
Y (if X is an orthonormal basis) (1.32)

XY = YT
X (if Y is an orthonormal basis) (1.33)

Note that these definitions are much faster computationally since transposing a matrix requires much fewer operations
than performing a matrix inversion.

1.8 Rotation Matrices

Recall from Section 1.7.3 that a Cartesian coordinate system is defined by an orthonormal basis. While we already
simplified the generalized change of basis for Cartesian coordinate systems, there are special ways we can perform a
change of basis in a three-dimensional Euclidian space.

In a three-dimensional Euclidian space, the change of basis from one Cartesian coordinate system to another
can be represented using rotations.

1.8.1 Passive vs. Active Rotations

When dealing with rotations of coordinate spaces and vectors, there are two common ways that rotations are per-
formed:

1. Passive Rotation: The original coordinate system is rotated by some angle θ about one of its axes, while any
vector or matrix quantities remain constant, i.e. passive, with respect to the original coordinate systems. The
vector and matrix quantities are then be resolved in the new coordinate system.

2. Active Rotation: The coordinate system remains stationary and the vector or matrix actively rotates with respect
to the original coordinate system.

In fields such as computer graphics and video games, active rotations are generally used because there is usually some
object moving in a fixed coordinate system. However, in the field of dynamics, specifically aerospace dynamics, we
typically use passive rotations, since we will have a vector that we want to resolve or express in different coordinate
systems [1].

1.8.2 Elementary Rotations

Consider the Ox1x2x3 coordinate system. We refer to the three axes of the this coordinate system as either the first,
second, or third axes.

Convention 7: Numbering axes.

1. x1 = 1st axis
2. x2 = 2nd axis
3. x3 = 3rd axis

We define the rotation matrix for a counterclockwise rotation of θ about the ith axis of a coordinate system as Ri(θ).
There are three elementary rotations, each about a different axes, encoded by R1, R2, and R3, respectively:
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1. R1(θ): Encodes counterclockwise rotation by θ of the 2nd and 3rd axes (x2x3-plane) about the 1st axis (x1).
2. R2(θ): Encodes counterclockwise rotation by θ of the 1st and 3rd axes (x1x3-plane) about the 2nd axis (x2).
3. R3(θ): Encodes counterclockwise rotation by θ of the 1st and 2nd axes (x1x2-plane) about the 3rd axis (x3).

These rotations are illustrated in Fig. 1.4. The rotation matrices R1(θ), R2(θ), and R3(θ) are defined by Eqs. (1.34),

O θ

x1, x′
1 x2

x3

x′
2

x′
3

(a) Rotation about 1st axis.

O

θ

x1
x2, x′

2

x3

x′
1

x′
3

(b) Rotation about 2nd axis.

O

θx1 x2

x3, x′
3

x′
1

x′
2

(c) Rotation about 3rd axis.

Figure 1.4: Elementary rotations.

(1.35), and (1.36), respectively [9, p. 162], [3], [6].

R1(θ) =

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 (1.34)

R2(θ) =

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 (1.35)

R3(θ) =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 (1.36)

We formalize these simple equations as algorithms since they will be used often in other algorithms.
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Algorithm 1: rot1
Rotation matrix for a passive rotation about the 1st axis.

Inputs:
• θ ∈ R - angle of rotation [rad]

Procedure:
1. Precompute the trigonometric functions.

c = cos θ

s = sin θ

2. Construct the rotation matrix.

R1(θ) =

1 0 0
0 c s
0 −s c


Outputs:

• R1(θ) ∈ R3×3 - rotation matrix about 1st axis (passive)

Algorithm 2: rot2
Rotation matrix for a passive rotation about the 2nd axis.

Inputs:
• θ ∈ R - angle of rotation [rad]

Procedure:
1. Precompute the trigonometric functions.

c = cos θ

s = sin θ

2. Construct the rotation matrix.

R2(θ) =

c 0 −s
0 1 0
s 0 c


Outputs:

• R2(θ) ∈ R3×3 - rotation matrix about 2nd axis (passive)

Algorithm 3: rot3
Rotation matrix for a passive rotation about the 3rd axis.

Inputs:
• θ ∈ R - angle of rotation [rad]
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Procedure:
1. Precompute the trigonometric functions.

c = cos θ

s = sin θ

2. Construct the rotation matrix.

R3(θ) =

 c s 0
−s c 0
0 0 1


Outputs:

• R3(θ) ∈ R3×3 - rotation matrix about 3rd axis (passive)

1.8.3 Properties of Elementary Rotation Matrices

Let X = (x̂1, x̂2, x̂3) and X ′ = (x̂′
1, x̂

′
2, x̂3) be two ordered bases that are both orthonormal bases, where X ′ is

defined by rotating X about the x3 axis by an angle θ. Consider a vector, vX , resolved in the coordinate system
defined by X . To resolve that same vector in the coordinate system defined by X ′, we could perform the change of
basis as defined by Eq. (1.20).

vX′ = XX′vX

However, we can note that this same change of basis can be performed by the elementary rotation matrix R3(θ).

vX′ = R3(θ)vX

Since XX′ is orthogonal (X is an orthonormal basis), and since R3(θ) = XX′ , we know that R3(θ) is orthogonal. In
general,

Elementary rotation matrices, Ri(θ), are orthogonal matrices.

Consider defining an elementary rotation matrix using a negative angle.

R1(−θ) =

1 0 0
0 cos (−θ) sin (−θ)
0 − sin (−θ) cos (−θ)

 =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 =

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

T

= R1(θ)
T

R2(−θ) =

cos (−θ) 0 − sin (−θ)
0 1 0

sin (−θ) 0 cos (−θ)

 =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 =

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

T

= R2(θ)
T

R3(−θ) =

 cos (−θ) sin (−θ) 0
− sin (−θ) cos (−θ) 0

0 0 1

 =

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

T

= R3(θ)
T

Thus, in general, we have
Ri(−θ) = Ri(θ)

T

However, we also know that since Ri(θ) is orthogonal, its inverse is equal to its transpose. Therefore, we have

Ri(θ)
−1 = Ri(θ)

T = Ri(−θ) (1.37)

Since elementary rotation matrices are orthogonal, they also share all the other properties of orthogonal matrices as
summarized in Section 1.7.1. Note that in the properties below, x,y ∈ R3.

|det [Ri(θ)]| = 1 (1.38)
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Ri(θ)
TRi(θ) = Ri(θ)Ri(θ)

T = I3×3 (1.39)

[Ri(θ)x]
T
[Ri(θ)y] = xTy (1.40)

∥Ri(θ)x∥ = ∥x∥ (1.41)

Since Ri(−θ) = Ri(θ)
T , we can also get an alternate version of the property presented by Eq. (1.39).

Ri(θ)Ri(−θ) = I3×3 (1.42)

1.8.4 Sequential Rotations

Consider an arbitrary vector v ∈ R3 resolved with respect to the ordered basis S = (x̂, ŷ, ẑ), where S defines the
coordinate system Oxyz.

vS =

vxvy
vz


First, rotating S by θ1 about the 1st axis (x), we obtain a new coordinate system Ox′y′z′ defined by the ordered basis
S′ = (x̂′, ŷ′, ẑ′). Resolving v in the Ox′y′z′ coordinate system (i.e. with respect to the ordered basis S′),

vS′ = R1(θ1)vS

Next, rotating S′ by θ2 about the 2nd axis (y′), we obtain a third coordinate system, Ox′′y′′z′′ defined by the ordered
basis S′′ = (x̂′′, ŷ′′, ẑ′′). Resolving v in the Ox”y”z” coordinate system (i.e. with respect to the ordered basis S′′),

vS′′ = R2(θ2)vS′

= R2(θ2)R1(θ1)vS

In general, for a rotation sequence i → j → k (where i, j, and k can be either 1, 2, or 3, i.e. representing an axis), we
define

Rijk(θ1, θ2, θ3) = Rk(θ3)Rj(θ2)Ri(θ1) (for the rotation sequence i → j → k) (1.43)

Convention 8: Sequential rotation.

The ijk rotation sequence (i → j → k) is described by the rotation matrix

Rijk(θ1, θ2, θ3)

where
1. The angles are input in the order the rotations are applied, so their subscript cor-

responds to the current rotation. For example, θ2 is used for the second rotation.
2. All angles assumes counterclockwise is positive.
3. The rotations are applied in the order of the subscript:

(a) First rotation is about the ith axis.
(b) Second rotation is about the jth axis.
(c) Third rotation is about the kth axis.

There are two specific rotation sequences that are typically used in aerospace simulation. The two sequences
are described in detail below.

3-2-1 Rotation sequence

The 3-2-1 (3 → 2 → 1) Rotation sequence consists of the following steps:
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1. rotation of θ1 about z (3rd axis)
2. rotation of θ2 about y′ (2nd axis)
3. rotation of θ3 about x′′ (1st axis)

The rotation matrix for the 3-2-1 sequence is [3]1, [10, pp. 763-764]2

R321(θ1, θ2, θ3) = R1(θ3)R2(θ2)R3(θ1)

=

 cos θ3 sin θ3 0
− sin θ3 cos θ3 0

0 0 1

cos θ2 0 − sin θ2
0 1 0

sin θ2 0 cos θ2

1 0 0
0 cos θ1 sin θ1
0 − sin θ1 cos θ1



R321(θ1, θ2, θ3) =

 cos θ2 cos θ1 cos θ2 sin θ1 − sin θ2
− cos θ3 sin θ1 + sin θ3 sin θ2 cos θ1 cos θ3 cos θ1 + sin θ3 sin θ2 sin θ1 sin θ3 cos θ2
sin θ3 sin θ1 + cos θ3 sin θ2 cos θ1 − sin θ3 cos θ1 + cos θ3 sin θ2 sin θ1 cos θ3 cos θ2


(1.44)

We formalize Eq. (1.44) as Algorithm 4 below. Note that in its implementation, we precompute the trigonometric
functions before populating the matrix to decrease the computational cost.

Algorithm 4: rot321
Rotation matrix for the 3-2-1 rotation sequence.

Inputs:
• θ1 ∈ R - angle for first rotation (about 3rd axis) [rad]
• θ2 ∈ R - angle for second rotation (about 2nd axis) [rad]
• θ3 ∈ R - angle for third rotation (about 1st axis) [rad]

Procedure:
1. Precompute the trigonometric functions.

s1 = sin θ1

c1 = cos θ1

s2 = sin θ2

c2 = cos θ2

s3 = sin θ3

c3 = cos θ3

2. Construct the rotation matrix.

R321(θ1, θ2, θ3) =

 c2c1 c2s1 −s2
−c3s1 + s3s2c1 c3c1 + s3s2s1 s3c2
s3s1 + c3s2c1 −s3c1 + c3s2s1 c3c2


Outputs:

• R321(θ1, θ2, θ3) ∈ R3×3 - rotation matrix for 3-2-1 rotation sequence

1 In this reference, θ1 = ψ, θ2 = θ, and θ3 = ϕ.
2 In this reference, θ1 = ϕ, θ2 = θ, and θ3 = ψ.
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3-1-3 Rotation sequence

The 3-1-3 (3 → 1 → 3) Rotation sequence consists of the following steps:
1. rotation of θ1 about x3 (3rd axis)
2. rotation of θ2 about x′

1 (1st axis)
3. rotation of θ3 about x′′

3 (3rd axis)

The rotation matrix for the 3-1-3 sequence is [3], [10, pp. 763-764]3

R313(θ1, θ2, θ3) = R3(θ3)R1(θ2)R3(θ1)

=

 cos θ3 sin θ3 0
− sin θ3 cos θ3 0

0 0 1

1 0 0
0 cos θ2 sin θ2
0 − sin θ2 cos θ2

 cos θ1 sin θ1 0
− sin θ1 cos θ1 0

0 0 1



R313(θ1, θ2, θ3) =

 cos θ3 cos θ1 − sin θ3 cos θ2 sin θ1 cos θ3 sin θ1 + sin θ3 cos θ2 cos θ1 sin θ3 sin θ2
− sin θ3 cos θ1 − cos θ3 cos θ2 sin θ1 − sin θ3 sin θ1 + cos θ3 cos θ2 cos θ1 cos θ3 sin θ2

sin θ2 sin θ1 − sin θ2 cos θ1 cos θ2


(1.45)

We formalize Eq. (1.45) as Algorithm 5 below. Note that in its implementation, we precompute the trigonometric
functions before populating the matrix to decrease the computational cost.

Algorithm 5: rot313
Rotation matrix for the 3-1-3 rotation sequence.

Inputs:
• θ1 ∈ R - angle for first rotation (about 3rd axis) [rad]
• θ2 ∈ R - angle for second rotation (about 1st axis) [rad]
• θ3 ∈ R - angle for third rotation (about 3rd axis) [rad]

Procedure:
1. Precompute the trigonometric functions.

s1 = sin θ1

c1 = cos θ1

s2 = sin θ2

c2 = cos θ2

s3 = sin θ3

c3 = cos θ3

2. Construct the rotation matrix.

R313(θ1, θ2, θ3) =

 c3c1 − s3c2s1 c3s1 + s3c2c1 s3s2
−s3c1 − c3c2s1 −s3s1 + c3c2c1 c3s2

s2s1 −s2c1 c2


Outputs:

• R313(θ1, θ2, θ3) ∈ R3×3 - rotation matrix for 3-1-3 rotation sequence

3 In this reference, θ1 = ϕ, θ2 = θ, and θ3 = ψ.
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1.8.5 Properties of Sequential Rotation Matrices

A sequential rotation matrix is defined as

Rijk(θ1, θ2, θ3) = Rk(θ3)Rj(θ2)Ri(θ1)

Ri(θ1), Rj(θ2), and Rk(θ3) are all elementary rotation matrices, and in Section 1.8.3 we showed that elementary
rotation matrices are orthogonal matrices. Additionally, from Section 1.7.2, we know that taking the product of
orthogonal matrices results in an orthogonal matrix. Thus, we know that

Sequential rotation matrices, Rijk(θ1, θ2, θ3), are orthogonal matrices.

Consider taking the transpose of Rijk(θ1, θ2, θ3).

Rijk(θ1, θ2, θ3)
T = [Rk(θ3)Rj(θ2)Ri(θ1)]

T
= Ri(θ1)

TRj(θ2)
TRk(θ3)

T = Ri(−θ1)Rj(−θ2)Rk(−θ3)

= Rkji(−θ3,−θ2,−θ1)

Since sequential rotation matrices are orthogonal matrices, their transpose is also equal to their inverse. Thus,

Rijk(θ1, θ2, θ3)
−1 = Rijk(θ1, θ2, θ3)

T = Rkji(−θ3,−θ2,−θ1) = Ri(−θ1)Rj(−θ2)Rk(−θ3) (1.46)
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A
Test Cases

A.1 Rotation Test Cases
A.1.1 Elementary Rotations

All rotation test cases should be tested to 15 digits of accuracy.

θ [rad] R1(θ) R2(θ) R3(θ)
rot1 rot2 rot3

0

1 0 0
0 1 0
0 0 1

 1 0 0
0 1 0
0 0 1

 1 0 0
0 1 0
0 0 1



π/4

1 0 0

0
√
2/2

√
2/2

0 −
√
2/2

√
2/2

 √2/2 0 −
√
2/2

0 1 0√
2/2 0

√
2/2

  √
2/2

√
2/2 0

−
√
2/2

√
2/2 0

0 0 1


π/2

1 0 0
0 0 1
0 −1 0

 0 0 −1
0 1 0
1 0 0

  0 1 0
−1 0 0
0 0 1



3π/4

1 0 0

0 −
√
2/2

√
2/2

0 −
√
2/2 −

√
2/2

 −√
2/2 0 −

√
2/2

0 1 0√
2/2 0 −

√
2/2

 −√
2/2

√
2/2 0

−
√
2/2 −

√
2/2 0

0 0 1


π

1 0 0
0 −1 0
0 0 −1

 −1 0 0
0 1 0
0 0 −1

 −1 0 0
0 −1 0
0 0 1



5π/4

1 0 0

0 −
√
2/2 −

√
2/2

0
√
2/2 −

√
2/2

 −√
2/2 0

√
2/2

0 1 0

−
√
2/2 0 −

√
2/2

 −√
2/2 −

√
2/2 0√

2/2 −
√
2/2 0

0 0 1


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3π/2

1 0 0
0 0 −1
0 1 0

  0 0 1
0 1 0
−1 0 0

 0 −1 0
1 0 0
0 0 1



7π/4

1 0 0

0
√
2/2 −

√
2/2

0
√
2/2

√
2/2

  √
2/2 0

√
2/2

0 1 0

−
√
2/2 0

√
2/2

 √2/2 −
√
2/2 0√

2/2
√
2/2 0

0 0 1


2π

1 0 0
0 1 0
0 0 1

 1 0 0
0 1 0
0 0 1

 1 0 0
0 1 0
0 0 1



A.1.2 Sequential Rotations

3-2-1 Rotation Sequence (rot321)

“Forward” Test:

θ1 = 30
( π

180

)
θ2 = −40

( π

180

)
θ3 = 50

( π

180

)
rot321(θ1, θ2, θ3) should equal rot1(θ3)rot2(θ2)rot3(θ1)

“Reverse” Test:

θ1 = 30
( π

180

)
θ2 = −40

( π

180

)
θ3 = 50

( π

180

)
rot321(θ1, θ2, θ3)T should equal rot3(−θ1)rot2(−θ2)rot3(−θ3)

3-2-1 Rotation Sequence (rot321)

“Forward” Test:

θ1 = 30
( π

180

)
θ2 = −40

( π

180

)
θ3 = 50

( π

180

)
rot313(θ1, θ2, θ3) should equal rot3(θ3)rot1(θ2)rot3(θ1)
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“Reverse” Test:

θ1 = 30
( π

180

)
θ2 = −40

( π

180

)
θ3 = 50

( π

180

)
rot313(θ1, θ2, θ3)T should equal rot3(−θ1)rot1(−θ2)rot3(−θ3)
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