
Algorithms for
Interpolation

Tamas Kis | tamas.a.kis@outlook.com

Tamas Kis
https://tamaskis.github.io

Copyright © 2022 Tamas Kis.

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/ or send a letter
to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

https://tamaskis.github.io
http://creativecommons.org/licenses/by-nc-sa/4.0/

Contents

Contents iii

List of Algorithms iv

Preface v

I Interpolation of Data 1

1 Basic Mechanics 2
1.1 Sampling Continuous Functions Over Grids . 2

1.1.1 Extension to Univariate, Vector-Valued Functions . 3
1.2 Interpreting Data as a Sampled Function . 3
1.3 Monotonicity of the Node Vector . 4
1.4 Finding the Query Interval . 4

1.4.1 Special Case #1: Query Point at or Below Lower Bound of Node Vector 6
1.4.2 Special Case #2: Query Point at or Above Upper Bound of Node Vector 6
1.4.3 Algorithm . 6

1.5 Out of Bounds Queries and Extrapolation . 8
1.6 Horner’s Method for Evaluating Polynomials . 10

1.6.1 Extension to Univariate, Vector-Valued Polynomials . 11

2 Linear Interpolation 12
2.1 Linear Interpolation . 12

II Appendices 15

A Test Cases 16
A.1 find_interval . 16
A.2 out_of_bounds . 17
A.3 horners_method . 17
A.4 interp1d_linear . 18

References 20

List of Algorithms

Utilities

Algorithm 1 find_interval Finds the interval containing a query point 7
Algorithm 2 out_of_bounds Out of bounds handling for interpolation routines 9
Algorithm 3 horners_method_scalar Horner’s method for evaluating a univariate,

scalar-valued polynomial . 10
Algorithm 4 horners_method

Horner’s method for evaluating a univariate polynomial . 11

Linear Interpolation

Algorithm 5 interp1d_linear Linear interpolation of univariate data 13

Preface

THE purpose of this text is to present commonly used interpolation routines in a standardized, easy-to-implement
format. All algorithms presented in this text use 1-based indexing, and are implemented in the Interpolation Tool-

box for MATLAB1. For programming languages using 0-based indexing (such as Python and C++), these algorithms
require some slight adjustments.

1 https://tamaskis.github.io/Interpolation_Toolbox-MATLAB/

https://tamaskis.github.io/Interpolation_Toolbox-MATLAB/

VI CONTENTS

PART I
Interpolation of Data

1
Basic Mechanics

1.1 Sampling Continuous Functions Over Grids

Consider the univariate, scalar-valued, continuous function y = f(x) (f : R → R), shown below in Fig. 1.1.

x

y y = f(x)

Figure 1.1: Continuous function.

Let a node be a single, discrete value of the independent variable x. Now, consider N + 1 nodes x1, ..., xN+1,
which we can store in the node vector1 x ∈ R1×(N+1).

x =
[
x1 · · · xN+1

]
(1.1)

If we sample f(x) at every node xi in the node vector x, then each node xi will have a corresponding function
evaluation yi = f(xi). See Fig. 1.2 below for a visual representation2. Like the nodes, we can store the function
evaluations in a vector y ∈ R1×(N+1), which we refer to as the value vector.

y =
[
y1 · · · yN+1

]
=

[
f(x1) · · · f(xN+1)

]
(1.2)

The row vectors x and y essentially form a set of data. Thus, by sampling the function over a grid, we can transition

1 Also commonly referred to as a grid or mesh.
2 While in this visualization the nodes are uniformly spaced, in general this is not the case. None of the methods presented in this text require a

uniform grid.

1.2 Interpreting Data as a Sampled Function 3

x

y y = f(x)

x1 x2 xi−1 xi xi+1 xN xN+1

y1

y2
yi−1

yi
yi+1

yN
yN+1

Figure 1.2: Sampling a continuous function over a grid.

from dealing with the function as a continuous function to treating it like a set of data.

y = f(x)
sample−−−→ y vs. x

1.1.1 Extension to Univariate, Vector-Valued Functions

Now, consider the univariate, vector-valued, continuous function y = f(x) (f : R → Rm). If we sample this function
at N + 1 points, then we still have the same node vector given by Eq. (1.1). However, instead of a value vector, we
now have the value matrix [y] ∈ Rm×(N+1). Each column of [y] is a distinct value of y.

[y] =
[
y1 · · · yN+1

]
=

[
f(x1) · · · f(xN+1)

]
(1.3)

Again, x and [y] essentially form a set of data.

y = f(x)
sample−−−→ [y] vs. x

1.2 Interpreting Data as a Sampled Function

In the real world, functional relationships are all around us. When we collect data, there is some independent variable
x for which we can measure a vector of values y. By taking measurements at multiple values of x, and recording the
corresponding values of y, we built the data set

[y] vs. x

where x ∈ R1×(N+1) and [y] ∈ Rm×(N+1) store the values of the independent and dependent variables, respectively,
and where the number of data points if N + 1.

In the previous section, we took a continuous function, sampled it, and said it could be treated like a set of
data. Here, we take the converse viewpoint; we have a set of data, but we consider it as a sample from an underlying
unknown function f(x). If we knew f(x), we could immediately find a value y for any point x.

In this case, while there is some underlying function f(x) that maps values of x to values of y, we do not
explicitly know it. However, we still want to evaluate it at other points, even though we can only represent it as a set
of data. The interpolation methods presented in this text will allow us to (approximately) evaluate f(x) at any point x
without ever explicitly knowing f(x).

4 CHAPTER 1 Basic Mechanics

1.3 Monotonicity of the Node Vector

Recall the node vector, x ∈ RN+1. The algorithm used for finding the query interval (see Algorithm 1 in the next
section) requires that the elements of the node vector be monotonically increasing. Mathematically, this means that

xi+1 > xi ∀ i ∈ [1, N] (1.4)

For example, consider the node vector

x =
[
1 4 5 8 20 21

]
This node vector is monotonically increasing. However, the node vector

x =
[
1 2 3 3 4 5

]
is not a monotonically increasing vector since two of its elements are identical.

1.4 Finding the Query Interval

Consider the node vector x ∈ R1×(N+1). A visual representation of the node vector is shown in Fig. 1.3 below. Now,

x1 x2 x3 xi−1 xi xi+1 xN−1 xN xN+1

· · · · · ·

Figure 1.3: Node vector.

consider a query point, xq ∈ R. We want to find the lower index, l, and upper index, u, corresponding to the points
xl and xu that form the query interval containing xq .

xl ≤ xq < xu, i.e. xq ∈ [l, u) (1.5)

Note that for any query interval, we always have

u = l + 1 (1.6)

As an example for finding l and u, see Example 1.4.1 below.

Example 1.4.1: Finding the lower and upper indices of a query interval.

Consider the node vector

x =
[
x1 x2 x3 x4 x5

]
=

[
3 4 5 6 7

]
and the query point

xq = 4.5

Find the lower and upper indices (l and u, respectively) defining the query interval for xq .

■ SOLUTION

First, let’s draw a picture.

1.4 Finding the Query Interval 5

x1 = 3 x2 = 4 x3 = 5 x4 = 6 x5 = 7

xq = 4.5

The query interval is clearly [4, 5). In terms of the variables of x, the query interval is [x2, x3), since x2 = 4
and x3 = 5. Therefore, the lower and upper indices corresponding to the query interval for this query point are

l = 2

u = 3

Note that since the query interval uses an inclusive lower bound and exclusive upper
bound, if a query point is equal to the ith node, then the query interval is [xi, xi+1) and
the lower and upper indices are l = i and u = i + 1, respectively. This is shown in
Example 1.4.2 below.

Example 1.4.2: Querying a node.

Consider the node vector

x =
[
x1 x2 x3 x4 x5

]
=

[
3 4 5 6 7

]
and the query point

xq = 5

Find the lower and upper indices (l and u, respectively) defining the query interval for xq .

■ SOLUTION

First, let’s draw a picture.

x1 = 3 x2 = 4 x3 = 5 x4 = 6 x5 = 7

xq = 5

Since the lower bound of the query interval is defined to be inclusive, in this case the query interval is [5, 6). In
terms of the variables of x, the query interval is [x3, x4), since x3 = 5 and x4 = 6. Therefore, the lower and
upper indices corresponding to the query interval for this query point are

l = 3

u = 4

6 CHAPTER 1 Basic Mechanics

1.4.1 Special Case #1: Query Point at or Below Lower Bound of Node Vector

Consider the case where the query point is at or below the lower bound of the node vector, i.e.

xq ≤ x1

This case is illustrated in Fig. 1.4 below. For this special case, we manually define the query interval to be [x1, x2)

x1 x2 x3 xi−1 xi xi+1 xN−1 xN xN+1

· · · · · ·

xq

Figure 1.4: Query point at or below lower bound of node vector.

with corresponding lower and upper indices
l = 1

u = 2
(1.7)

1.4.2 Special Case #2: Query Point at or Above Upper Bound of Node Vector

Consider the case where the query point is at or above the upper bound of the node vector, i.e.

xq ≥ xn+1

This case is illustrated in Fig. 1.5 below.

x1 x2 x3 xi−1 xi xi+1 xN−1 xN xN+1

· · · · · ·

xq

Figure 1.5: Query point at or above bound of node vector.

For this special case, we manually define the query interval to be [xN , xN+1) with corresponding lower and upper
indices

l = N

u = N + 1
(1.8)

1.4.3 Algorithm

The default method for algorithmically determining the interval containing a query point is the binary search algorithm;
the basics of this algorithm for this specific problem are outlined in [1]. Algorithm 1 below is largely based on the
binary search algorithm3, but we also include the special cases discussed in Sections 1.4.1 and 1.4.2.

3 In the case of a uniform grid, we could immediately get the lower index as

l =

⌊
xq − x1

x2 − x1

⌋
+ 1

1.4 Finding the Query Interval 7

Algorithm 1: find_interval
Finds the interval containing a query point.

Inputs:
• x ∈ R1×(N+1) - node vector (independent variable data)
• xq ∈ R - query point

Procedure:
1. Determine the number of subintervals, N , given that x ∈ R1×(N+1).
2. Case #1: Query point at or below lower boundary of node vector.

if xq ≤ x1

l = 1
u = 2

3. Case #2: Query point at or above upper boundary of node vector.

else if xq ≥ x1

l = N
u = N + 1

4. Case #3: Query point contained within the node vector. Note that this procedure
assumes 1-based indexing.

else

(a) Initialize the lower and upper indices.

l = 1

u = N + 1

(b) Binary search procedure.

while l < r

i. Midpoint index.

m =

⌊
l + r

2

⌋
ii. Discard either the lower or upper half of the search space.

if xm < xq

l = m+ 1

else
u = m

end

However, the general overhead of the find_interval algorithm largely outweighs any performance boost that this direct equation would
provide. Thus, it is not worth it to add additional logic to implement this case for uniform node vectors.

8 CHAPTER 1 Basic Mechanics

end

(c) Decrement lower index by 1 unless xl = xq .

if xl ̸= xq

l = l − 1
end

(d) Updates upper index based on value of lower index.

u = l + 1

5. Return the result.

return l, u

Outputs:
• l ∈ Z - lower index of interval containing query point
• u ∈ Z - upper index of interval containing query point

Note:
• The node vector, x, must be monotonically increasing (see Section 1.3).
• If the query point is extremely close to one of the nodes, the subinterval returned

might be inaccurate. For example, in MATLAB, (3− ε) < 3 evaluates as false,
so if 3 were a node, this algorithm would return the wrong interval for 3− ε.

Test Cases:
• See Appendix A.1.

1.5 Out of Bounds Queries and Extrapolation

In Sections 1.4.1 and 1.4.2, we defined how to find the query interval when the query point was outside the bounds
of the node vector. We refer to such queries as out of bounds queries; see Figs. 1.4 and 1.5 for illustrations of such
queries.

Extrapolation is when we use an interpolation method to return a value for a query point outside the bounds of
the node vector. In Section 1.4, we introduced a standardized way for determining the query interval for out of bounds
queries (and have incorporated this in Algorithm 1 for finding the query interval). All interpolation routines in this
text are set up such that when Algorithm 1 is used to find the query interval for an out of bounds query, the appropriate
query interval is returned for use with extrapolation.

In general, there are four potential ways we handle out of bounds queries in interpolation routines. These four
methods are listed below (note that the first is just extrapolation, which we just discussed):

1. Extrapolation. By default, all the algorithms we introduce in this text automatically perform extrapolation
without the need for any additional logical; the query interval returned by Algorithm 1 will automatically be the
query interval needed for extrapolation in the case of out of bounds queries.

2. Hold the endpoint value. Instead of extrapolating, one option is to hold the value at the nearest endpoint; for
example, if a query point is below the lower bound of the node vector, we assume the corresponding value is the
value at the lower bound of the node vector.

3. Error. Often, if a query point is outside the bounds of the node vector, this hints at a larger issue (i.e. we should
not be getting out of bounds query points in the first place). In such cases, it is useful for an interpolation routine

1.5 Out of Bounds Queries and Extrapolation 9

to raise an error.
4. Default value. Sometimes, we just want to use a default value if the query point is outside the bounds of the

node vector.

As mentioned, extrapolation is performed by default for all interpolation routines in this text without needing any ad-
ditional logic. However, the remaining three methods require that we implement additional logic in each interpolation
routine. Since this logic is the same with any interpolation routine, we formalize it as Algorithm 2 below.

Algorithm 2: out_of_bounds
Out of bounds handling for interpolation routines.

Inputs:
• xq ∈ R - query point
• xl ∈ R - lower bound of node vector
• xu ∈ R - upper bound of node vector
• yl ∈ Rm - lower bound of value matrix
• yu ∈ Rm - upper bound of value matrix
• method - specifies what should occur if a query point is outside the bounds of

the node vector; there are three options for what can be input:
1. ’hold’ – holds the value from the endpoint
2. ’error’ – raises an error
3. provide a default value that is used any time the query point is

out of bounds

Procedure:
1. Raise an error.

if method = ’error’
error(Query point is out of bounds.)

2. Default the value.

else if (method is a number) or (method is NaN)
yq = method

3. Hold the value from the relevant endpoint.

else if method = ’hold’
if xq < xl

yq = yl

else
yq = yu

end

4. Raise an error for an invalid method.

else
error(Invalid out of bounds handling method specified.)

end

10 CHAPTER 1 Basic Mechanics

5. Return the result.

return yq

Outputs:
• yq ∈ Rm - manually set value for y at the query point

Test Cases:
• See Appendix A.1.

1.6 Horner’s Method for Evaluating Polynomials

Consider the nth degree, univariate, scalar-valued polynomial pn : R → R.

pn(x) = c0 + c1x+ c2x
2 + · · ·+ cnx

n (1.9)

To efficiently evaluate this polynomial at the evaluation point x0 ∈ R, we can use Horner’s method. Horner’s method
makes use of the coefficient vector, c ∈ R1×(n+1), which is a row vector storing the coefficients of the polynomial
[2, p. 95].

c =
[
c0 · · · cn

]
(1.10)

Note that if we are using 1-based indexing, then the ith element of c corresponds to the
(i− 1)th coefficient.

Algorithm 3: horners_method_scalar
Horner’s method for evaluating a univariate, scalar-valued polynomial.

Inputs:
• x ∈ R - evaluation point
• c ∈ R1×(n+1) - coefficient vector

Procedure:
1. Determine the degree of the polynomial, n, given that c ∈ R1×(n+1).
2. Initialize Horner’s algorithm.

y = cn

3. Recursively compute pn(x).

for i = n− 1 to 0 by −1

y = xy + ci
end

4. Evaluation of pn(x).

return y

Outputs:
• y ∈ R - evaluation of pn(x)

1.6 Horner’s Method for Evaluating Polynomials 11

1.6.1 Extension to Univariate, Vector-Valued Polynomials

Consider the nth degree, univariate, vector-valued polynomial pn : R → Rm.

pn(x) = c0 + c1x+ c2x
2 + · · ·+ cnx

n (1.11)

Now, the coefficients are no longer scalars, but rather vectors, i.e. ci ∈ Rm. To efficiently evaluate this polynomial at
an arbitrary point x ∈ R, we can extend Horner’s method to the vector-valued case. First, we now have a coefficient
matrix C ∈ Rm×(n+1), where the ith column stores the (i− 1)th coefficient vector.

C =
[
c0 · · · cn

]
(1.12)

Note that we write the vector-valued version of Horner’s method in terms of column vectors of C instead of the
coefficient vectors ci.

Algorithm 4: horners_method
Horner’s method for evaluating a univariate polynomial.

Inputs:
• x ∈ R - evaluation point
• C ∈ Rm×(n+1) - coefficient matrix

Procedure:
1. Determine the degree of the polynomial, n, given that C ∈ Rm×(n+1).
2. Initialize Horner’s algorithm.

y = C:,n+1

3. Recursively compute pn(x).

for i = n to 1 by −1

y = xy +C:,i

end

4. Evaluation of pn(x).

return y

Outputs:
• y ∈ Rm - evaluation of pn(x)

Test Cases:
• See Appendix A.3.

2
Linear Interpolation

2.1 Linear Interpolation

Consider an unknown, univariate, scalar-valued function y = f(x) (f : R → R). We want to approximate yq = f(xq),
where xq is our query point. We do not know f(x) specifically, but have a value vector y (vector of dependent variable
values) corresponding to the node vector x (vector of independent variable values). Using Algorithm 1, we can find
the lower and upper indices (l and r, respectively), corresponding to the query interval for xq . With the indices l and
r, we can find the two points, (xl, yl) and (xu, yu), between which to interpolate. The value, yq , corresponding to the
query point, xq , obtained via linear interpolation can be found by constructing a line connecting the lower and upper
endpoints and evaluating the equation of that line at the query point, xq . First, the line passing through (xl, yl) and
(xu, yu) has slope

m =
yu − yl
xu − xl

A point on this line is (xl, yl). Using point-slope form, we can find an equation for this line.

y − yl = m(x− xl) =

(
yu − yl
xu − xl

)
(x− xl) → y = yl +

(
yu − yl
xu − xl

)
(x− xl) (2.1)

Evaluating at the query point, x = xq , we get [3]

yq = yl +

(
yu − yl
xu − xl

)
(xq − xl) = yl +

(
xq − xl

xu − xl

)
(yu − yl) =

[
1− xq − xl

xu − xl

]
yl +

(
xq − xl

xu − xl

)
yu

Let

p =
xq − xl

xu − xl
(2.2)

represent the interpolation proportion, or the proportion of the distance that xq is from the xl with respect to the
width of the query interval. Then

yq = (1− p)yl + pyu

We can easily generalize this to the vector-valued case where the dependent variable is vector-valued. In this
case, we still have the node vector x ∈ R1×(N+1), but instead of the value vector we now have the value matrix
[y] ∈ Rm×(N+1). The linear interpolation becomes

yq = (1− p)yl + pyu (2.3)

where yl ∈ Rm and yu ∈ Rm are the lth and rth columns of [y], respectively, and where the interpolation proportion,
p, is still given by Eq. (2.2).

2.1 Linear Interpolation 13

In general, we can be given a query vector, xq ∈ R1×q that contains q query points where we want to find
a value for y. We can just loop over these query points, and return a value for y in each of them. We store these
interpolated results as the matrix [y]q ∈ Rm×q . Algorithm 5 below formalizes a calculation procedure for performing
linear interpolation.

Algorithm 5: interp1_linear
Linear interpolation of univariate, vector-valued data.

Inputs:
• x ∈ R1×(N+1) - node vector (independent variable data)
• [y] ∈ Rm×(N+1) - value matrix (dependent variable data)
• xq ∈ R1×q - query vector (i.e. where to interpolate)
• bounds - (OPTIONAL) specifies what should occur if a query point is

outside the bounds of the node vector; there are four options
for what can be input (defaults to ’extrapolate’):

1. ’extrapolate’ – performs extrapolation
2. ’hold’ – holds the value from the endpoint
3. ’error’ – raises an error
4. provide a default value that is used any time the query

point is out of bounds

Procedure:
1. Default bounds to extrapolate if not input.
2. Determine if extrapolation will be performed.

extrapolation = (bounds == ’extrapolate’)

3. Determine the number of subintervals, N , given that x ∈ R1×(N+1).
4. Determine the number of query points, q, given that xq ∈ Rq .
5. Determine the dimension of the dependent variable, m, given that [y] ∈

Rm×(N+1).
6. Preallocate the matrix [yq] ∈ Rm×q to store the interpolated values.
7. Perform linear interpolation at each query point.

for i = 1 to q

14 CHAPTER 2 Linear Interpolation

(a) Find the lower and upper indices defining the query interval
(Algorithm 1).

[l, u] = find_interval(x, xq,i)

(b) Interpolation proportion for the ith query point.

p =
xq,i − xl

xu − xl

(c) Linear interpolation for ith query point.

[yq]:,i = (1− p)[y]:,l + p[y]:,u

(d) Handle the edge case where xq is out of bounds and we’re not
extrapolating (Algorithm 2).

if (not extrapolate) and ((xq,i < x1) or (xq,i >
xN+1))

[yq]:,i =out_of_bounds(xq,i, x1, xN+1, y1,

yN+1,bounds)
end

end

8. Interpolated values of y at the query point(s).

return [yq]

Outputs:
• [yq] ∈ Rm×q - interpolated values of y at the query point(s)

Note:
• The node vector, x, must be monotonically increasing (see Section 1.3).

Test Cases:
• See Appendix A.4.

PART II
Appendices

A
Test Cases

A.1 find_interval

Two Nodes

Node Vector: x =
[
1 2

]
1-Based Indexing 0-Based Indexing

xq l u l u

0 1 2 0 1
0.5 1 2 0 1
1 1 2 0 1

1.5 1 2 0 1
2 1 2 0 1

2.5 1 2 0 1

Odd Number of Nodes

Node Vector: x =
[
1 2 3 4 5

]
1-Based Indexing 0-Based Indexing

xq l u l u

1.5 1 2 0 1
2.5 2 3 1 2
3.5 3 4 2 3
4.5 4 5 3 4
1 1 2 0 1
2 2 3 1 2
3 3 4 2 3
4 4 5 3 4
5 4 5 3 4

A.2 out_of_bounds 17

0 1 2 0 1
6 4 5 3 4

Even Number of Nodes

Node Vector: x =
[
1 2 3 4 5 6

]
1-Based Indexing 0-Based Indexing

xq l u l u

1.5 1 2 0 1
2.5 2 3 1 2
3.5 3 4 2 3
4.5 4 5 3 4
5.5 5 6 3 4
1 1 2 0 1
2 2 3 1 2
3 3 4 2 3
4 4 5 3 4
5 5 6 4 5
6 5 6 4 5
0 1 2 0 1
7 5 6 4 5

A.2 out_of_bounds

xq xl xu yl yu method yq

0 1 2 3 4 ’hold’ 3
3 1 2 3 4 ’hold’ 4
0 1 2 3 4 ’error’ N/A (function should raise error)
3 1 2 3 4 ’error’ N/A (function should raise error)
0 1 2 3 4 NaN NaN
3 1 2 3 4 NaN NaN
0 1 2 3 4 0 0
3 1 2 3 4 0 0

A.3 horners_method

Scalar-Valued Test Cases

18 APPENDIX A Test Cases

x c =
[
c0 · · · cn

]
y =

∑n
i=0 cix

i

5 1 1
5

[
1 2

]
11

5
[
1 2 3

]
86

5
[
1 2 3 4

]
586

Vector-Valued Test Cases

x C =
[
c0 · · · cn

]
y =

∑n
i=0 cix

i

5

[
1
2

] [
1
2

]
5

[
1 2
2 4

] [
11
22

]
5

[
1 2 3
2 4 6

] [
86
172

]
5

[
1 2 3 4
2 4 6 8

] [
586
1172

]

A.4 interp1d_linear

Two Nodes

Node Vector: x =
[
1 2

]
Value Vector: y =

[
1 2

]
xq method [yq]

1 N/A 1
1.25 N/A 1.25
1.5 N/A 1.5
1.75 N/A 1.75
2 N/A 2

0 ’extrapolate’ 0
0.25 ’extrapolate’ 0.25
0.5 ’extrapolate’ 0.5
0.75 ’extrapolate’ 0.75
2.25 ’extrapolate’ 2.25
2.5 ’extrapolate’ 2.5
2.75 ’extrapolate’ 2.75

0.5 ’hold’ 1
0.75 ’hold’ 1

A.4 interp1d_linear 19

2.25 ’hold’ 2
5 ’hold’ 2

0.5 ’error’ N/A (function should raise error)
0.75 ’error’ N/A (function should raise error)
2.25 ’error’ N/A (function should raise error)
5 ’error’ N/A (function should raise error)

Three Nodes

Node Vector: x =
[
1 2 3

]
Value Vector: y =

[
1 2 4

]
method = ’extrapolate’

xq [yq]

0 0
0.25 0.25
0.5 0.5
0.75 0.75
1 1

1.25 1.25
1.5 1.5
1.75 1.75
2 2

2.25 2.5
2.5 3
2.75 3.5
3 4

3.25 4.5
3.5 5
3.75 5.5
4 6

Vector-Valued Case

Node Vector: x =
[
1 2 3

]
Value Vector: y =

[
1 2 3
2 4 6

]
method = ’extrapolate’

xq [yq]

0 (0, 0)T

0.25 (0.25, 0.5)T

0.5 (0.5, 1)T

0.75 (0.75, 1.5)T

1 (1, 2)T

20 APPENDIX A Test Cases

1.25 (1.25, 2.5)T

1.5 (1.5, 3)T

1.75 (1.75, 3.5)T

2 (2, 4)T

2.25 (2.25, 4.5)T

2.5 (2.5, 5)T

2.75 (2.75, 5.5)T

3 (3, 6)T

3.25 (3.25, 6.5)T

3.5 (3.5, 7)T

3.75 (3.75, 7.5)T

4 (4, 8)T

Bibliography

[1] Binary search algorithm: Procedure for finding the leftmost element. Wikipedia. Accessed: April 5, 2022. URL:
https://en.wikipedia.org/wiki/Binary_search_algorithm#Procedure_for_finding_the_
leftmost_element.

[2] Richard L. Burden and J. Douglas Faires. Numerical Analysis. 9th ed. Boston, MA: Brooks/Cole, Cengage Learn-
ing, 2011.

[3] Linear interpolation. Wikipedia. Accessed: April 5, 2022. URL: https://en.wikipedia.org/wiki/
Linear_interpolation.

https://en.wikipedia.org/wiki/Binary_search_algorithm#Procedure_for_finding_the_leftmost_element
https://en.wikipedia.org/wiki/Binary_search_algorithm#Procedure_for_finding_the_leftmost_element
https://en.wikipedia.org/wiki/Linear_interpolation
https://en.wikipedia.org/wiki/Linear_interpolation

	Contents
	List of Algorithms
	Preface
	I Interpolation of Data
	1 Basic Mechanics
	1.1 Sampling Continuous Functions Over Grids
	1.1.1 Extension to Univariate, Vector-Valued Functions

	1.2 Interpreting Data as a Sampled Function
	1.3 Monotonicity of the Node Vector
	1.4 Finding the Query Interval
	1.4.1 Special Case #1: Query Point at or Below Lower Bound of Node Vector
	1.4.2 Special Case #2: Query Point at or Above Upper Bound of Node Vector
	1.4.3 Algorithm

	1.5 Out of Bounds Queries and Extrapolation
	1.6 Horner's Method for Evaluating Polynomials
	1.6.1 Extension to Univariate, Vector-Valued Polynomials

	2 Linear Interpolation
	2.1 Linear Interpolation

	II Appendices
	A Test Cases
	A.1 find_interval
	A.2 out_of_bounds
	A.3 horners_method
	A.4 interp1d_linear

	References

