Solving Initial Value Problems for ODEs using Fixed-Step Solvers

Tamas Kis
https://tamaskis.github.io

Copyright © 2021 Tamas Kis.
This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. To view a copy of this license, visit http: / creativecommons.org/licenses/by-nc-sa/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Contents

Contents iii
List of Algorithms v
I Basics of Initial Value Problems
1 Initial Value Problems 2
1.1 Definition 2
1.2 Converting Higher-Order IVPs to First-Order IVPs: The Scalar Case 3
1.3 Converting Higher-Order IVPs to First-Order IVPs: The Vector Case 6
2 Defining Systems Mathematically and Computationally 11
2.1 State Vectors and State Space 11
2.2 Coupled ODEs 16
2.3 Extra Parameters 17
2.3.1 Passing Extra Parameters 17
2.3.2 Recovering Extra Parameters 18
II IVP Solvers and Discretization
3 IVP Solvers for Vector-Valued Initial Value Problems 21
3.1 The General Solution 21
3.2 Discretization and Solution Arrays 21
3.2.1 Solution Matrix: Row Form 22
3.2.2 Solution Matrix: Column Form 23
3.3 A Brute Force Solution Method 23
3.4 General Form of an IVP solver 25
3.5 Propagation Functions 26
3.5.1 Single-Step Methods and One-Step Propagation 27
3.5.2 Multistep Methods 27
3.6 Time Detection Mode 28
3.6.1 Integrating Backwards in Time 29
3.7 Event Detection Mode 29
3.8 Converting Time Detection Mode to Event Detection Mode 31
3.8.1 Premature Termination Due to Numerical Issues 32
3.8.2 Integrating Backwards in Time 33
3.9 IVP Solver Algorithm 33
3.9.1 Starting Multistep Solvers 37
3.9.2 Expanding Solution Arrays 38
3.9.3 0 - vs. 1-Based Indexing 38
4 Matrix-Valued Initial Value Problems 39
4.1 Definition 39
4.2 Transforming a Matrix-Valued IVP into a Vector-Valued IVP 39
4.3 Obtaining the Matrix Results 43
4.4 One-Step Propagation for Matrix-Valued ODEs 45
4.5 IVP Solver Algorithm for Matrix-Valued IVPs 45
III Fixed-Step Integration Methods
5 Explicit Runga-Kutta (Single-Step) Methods 48
5.1 General Form of the Explicit Runge-Kutta Method 48
5.2 Euler Method 49
5.3 Runge-Kutta Second-Order Methods 50
5.4 Runge-Kutta Third-Order Methods 50
5.5 Runge-Kutta Fourth-Order Methods 51
5.6 List of Butcher Tableaus 52
5.7 Algorithms 54
6 Adams-Bashforth (Multistep Predictor) Methods 61
6.1 Adams-Bashforth Predictor 61
6.2 Adams-Bashforth Methods 62
6.3 Algorithms 62
7 Adams-Bashforth-Moulton (Multistep Predictor-Corrector) Methods 66
7.1 Adams-Moulton Corrector 66
7.2 Predictor-Corrector (PECE) Algorithms 67
7.3 Adams-Bashforth-Moulton Methods 68
7.4 Algorithms 68
References 73

List of Algorithms

IVP Solver Algorithms

Algorithm 3	solve_ivp	Fixed-step IVP solvers for solving vector-valued initial value problems
Algorithm 11	solve_ivp_matrix	Fixed-step IVP solvers for solving matrix-valued initial value problems

Utilities for IVP Solvers

Algorithm 4	expand_ivp_arrays	Expands the arrays storing the IVP solution	38
Algorithm 6	mat2vec_ODE	Transforms a matrix-valued ODE into a vector-valued ODE	41
Algorithm 7	mat2vec_IC	Transforms the initial condition for a matrix-valued IVP into the initial condition for its corresponding vector-valued IVP . .	42
Algorithm 9	mat2vec_E	Transforms the event function for a matrix-valued IVP into the event function for its corresponding vector-valued IVP	43
Algorithm 10	vec2mat_sol	Transforms the solution matrix for a vector-valued IVP into the solution array for its corresponding matrix-valued IVP	44

Single-Step Methods

Algorithm 12	RK1_euler
Algorithm 13	RK2_
Algorithm 14	RK2_heun
Algorithm 15	RK2_ralston
Algorithm 16	RK3_
Algorithm 17	RK3_heun
Algorithm 18	RK3_ralston
Algorithm 19	SSPRK3
Algorithm 20	RK4
Algorithm 21	RK4_ralston
Algorithm 22	RK4_38

Euler (first-order) method . 54
Midpoint method (Runge-Kutta 2nd-order method) 54
Heun's 2nd-order method (Runge-Kutta 2nd-order method).... 55
Ralston's 2nd-order method (Runge-Kutta 2nd-order method). . 55
(Kutta's) Runge-Kutta 3rd-order method.......................... . . 56
Heun's 3rd-order method (Runge-Kutta 3rd-order method) 56
Ralston's 3rd-order method (Runge-Kutta 3rd-order method) . . 57
Strong stability preserving Runge-Kutta 3rd-order method 57
(Classic) Runge-Kutta 4th-order method 58
Ralston's 4th-order method (Runge-Kutta 4th-order method)... 59
3/8-rule 4th-order method (Runge-Kutta 4th-order method) 59

Multitep Predictor Methods

Algorithm 23	AB2	Adams-Bashforth-Moulton 2nd-order method	62
Algorithm 24	AB3	Adams-Bashforth-Moulton 3rd-order method.	63
Algorithm 25	AB4	Adams-Bashforth-Moulton 4th-order method.	63
Algorithm 26	AB5	Adams-Bashforth-Moulton 5th-order method.	64
Algorithm 27	AB6	Adams-Bashforth-Moulton 6th-order method.	64
Algorithm 28	AB7	Adams-Bashforth-Moulton 7th-order method.	65
Algorithm 29	AB8	Adams-Bashforth-Moulton 8th-order method.	65

Multitep Predictor-Corrector Methods

Algorithm 30	ABM2	Adams-Bashforth 2nd-order method	69
Algorithm 31	ABM3	Adams-Bashforth 3rd-order method.	69
Algorithm 32	ABM4	Adams-Bashforth 4th-order method.	70
Algorithm 33	ABM5	Adams-Bashforth 5th-order method.	70
Algorithm 34	ABM6	Adams-Bashforth 6th-order method.	71
Algorithm 35	ABM7	Adams-Bashforth 7th-order method.	71
Algorithm 36	ABM8	Adams-Bashforth 8th-order method.	72

Converting Higher-Order IVPs to lst-Order IVPs

Algorithm 1		Converting a higher-order IVP to a first-order IVP (scalar dependent variable)
Algorithm 2		Converting a higher-order IVP to a first-order IVP (vector dependent variable)

Basicsof Initial

Initial Value Problems

1.1 Definition

There are many classes of problems involving ordinary differential equations (ODEs) and many different ways to solve them numerically. However, colloquially, IVP solvers ${ }^{1}$ are tools that can (numerically) solve initial value problems (IVPs) for ODEs. In these types of problems, we are given a differential equation along with an initial condition. In the single-variable case,

$$
\frac{d y}{d t}=f(t, y), \quad x\left(t_{0}\right)=x_{0}
$$

Our goal is to solve for $y(t)$. The above equation indicates that the rate of change is y is dependent on (a) the instantaneous value of y and (b) the independent variable, t^{2}.

The previous equation represented a 1st-order IVP. However, IVP solvers can are also design to be able to solve higher-order IVPs. For example, we can express a 2nd-order IVP as

$$
\frac{d^{2} y}{d t^{2}}=f\left(t, x, \frac{d y}{d t}\right), \quad y\left(t_{0}\right)=y_{0},\left.\quad \frac{d y}{d t}\right|_{t=t_{0}}=y_{0}^{\prime}
$$

For a 1st-order IVP, we know f and y_{0} and wish to find $y(t)$. For a 2 nd-order IVP, we know f, y_{0}, and y_{0}^{\prime}, and wish to find $y(t)$. In some (extremely rare) cases, it is possible to solve these problems explicitly. However, even then, it is often easier to just use a numerical method. Once again, it is vital to note that these numerical methods are applicable to vector valued IVPs as well. If we consider a vector-valued variable $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)^{T}$, then the 1 st and 2 nd-order IVPs become

$$
\begin{gathered}
\frac{d \mathbf{y}}{d t}=f(t, \mathbf{y}), \quad \mathbf{y}\left(t_{0}\right)=\mathbf{y}_{0} \\
\frac{d^{2} \mathbf{y}}{d t^{2}}=f\left(t, \mathbf{y}, \frac{d \mathbf{y}}{d t}\right), \quad \mathbf{y}\left(t_{0}\right)=\mathbf{y}_{0},\left.\quad \frac{d \mathbf{y}}{d t}\right|_{t=t_{0}}=\mathbf{y}_{0}^{\prime}
\end{gathered}
$$

[^0]
1.2 Converting Higher-Order IVPs to First-Order IVPs: The Scalar Case

Consider the general form of a 2nd-order IVP. Noting that the second derivative of a variable can be a function of the independent variable, the variable itself, and the first derivative of the variable, we write (in the general case)

$$
\begin{equation*}
\frac{d^{2} z}{d t^{2}}=g\left(t, z, \frac{d z}{d t}\right),\left.\quad \frac{d z}{d t}\right|_{t=t_{0}}=z_{0}^{\prime}, \quad z\left(t_{0}\right)=z_{0} \tag{1.1}
\end{equation*}
$$

Our goal is to solve such IVPs using an IVP solver. However, IVP solvers are only suitable for solving lst-order $I V P s$. The solution to this issue is to define a vector-valued differential equation using a vector, \mathbf{y}, to represent the dependent variable. The general form of such a vector-valued differential equation is

$$
\begin{equation*}
\frac{d \mathbf{y}}{d t}=\mathbf{f}(t, \mathbf{y}), \quad \mathbf{y}\left(t_{0}\right)=\mathbf{y}_{0} \tag{1.2}
\end{equation*}
$$

At first glance, going from Eq. (1.1) to Eq. (1.2) seems like an impossible undertaking. However, the conversion can be accomplished in three steps, in a rather algorithmic fashion. Thus, we first introduce Algorithm 1 to define the procedure for an m th-order IVP, and then use this algorithm to show how to convert Eq. (1.1) to Eq. (1.2).

Algorithm 1:

Converting a higher-order IVP to a first-order IVP [scalar dependent variable].

Given:

- $\frac{d^{m} z}{d t^{m}}=g\left(t, z, \frac{d z}{d t}, \frac{d^{2} z}{d t^{2}}, \ldots, \frac{d^{m-1} z}{d t^{m-1}}\right) \quad-m$ th-order ODE
- $z_{0}, z_{0}^{\prime}, z_{0}^{\prime \prime}, \ldots, z_{0}^{(m-1)} \quad$ - initial conditions

Procedure:

1. Define the vector \mathbf{y} as the original dependent variable z and its derivatives up to the $(m-1)$ th derivative.

$$
\mathbf{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
y_{3} \\
\vdots \\
y_{n}
\end{array}\right]=\left[\begin{array}{c}
z \\
d z / d t \\
d^{2} z / d t^{2} \\
\vdots \\
d^{m-1} z / d t^{m-1}
\end{array}\right]
$$

2. Find the derivative of \mathbf{y}.

$$
\frac{d \mathbf{y}}{d t}=\left[\begin{array}{c}
d z / d t \\
d^{2} z / d t^{2} \\
d^{3} z / d t^{3} \\
\vdots \\
d^{m} z / d t^{m}
\end{array}\right]
$$

3. Note that the original differential equation was defined as $d^{m} z / d t^{2}=g(\ldots)$.

Thus, we can substitute the function g into the last component of $d \mathbf{y} / d t$.

$$
\frac{d \mathbf{y}}{d t}=\left[\begin{array}{c}
d z / d t \\
d^{2} z / d t^{2} \\
d^{3} z / d t^{3} \\
\vdots \\
g\left(t, z, \frac{d z}{d t}, \frac{d^{2} z}{d t^{2}}, \ldots, \frac{d^{m-1} z}{d t^{m-1}}\right)
\end{array}\right]
$$

4. From step 1 , we can see that $z=y_{1}, d z / d t=y_{2}, d^{2} z / d t^{2}=y_{3}$, etc. Make these substitutions into the RHS of the equation from step 3. This essentially gives us $\mathbf{f}(t, \mathbf{y})$.

$$
\frac{d \mathbf{y}}{d t}=\mathbf{f}(t, \mathbf{y})=\left[\begin{array}{c}
y_{2} \\
y_{3} \\
y_{4} \\
\vdots \\
g\left(t, y_{1}, y_{2}, y_{3}, \ldots, y_{n}\right)
\end{array}\right]
$$

5. At this point, we have the function $\mathbf{f}(t, \mathbf{y})$ defining the vector-valued differential equation. Now, we just need to define its initial conditions. Once again exploiting the fact that $z=y_{1}, d z / d t=y_{2}, d^{2} z / d t^{2}=y_{3}$, etc., we can write

$$
\mathbf{y}_{0}=\left[\begin{array}{c}
y_{1,0} \\
y_{2,0} \\
y_{3,0} \\
\vdots \\
y_{n, 0}
\end{array}\right]=\left[\begin{array}{c}
z_{0} \\
z_{0}^{\prime} \\
z_{0}^{\prime \prime} \\
\vdots \\
z_{0}^{(m-1)}
\end{array}\right]
$$

Return:

- $\mathbf{f}(t, \mathbf{y}) \quad$ - multivariate, vector-valued function $\left(\mathbf{f}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}\right)$ defining the ODE $d \mathbf{y} / d t=\mathbf{f}(t, \mathbf{y})$
- $\mathbf{y}_{0} \in \mathbb{R}^{m} \quad$ - initial condition

Let's return to the 2 nd-order case and apply Algorithm 1 to write it as a 1st-order IVP. Since z is a scalar variable, we need $\mathbf{y} \in \mathbb{R}^{2}$; this is because one component of \mathbf{y} will store z, while the other will store its derivative with respect to t.

$$
\mathbf{y}=\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{c}
z \\
d z / d t
\end{array}\right]
$$

Differentiating \mathbf{y},

$$
\frac{d \mathbf{y}}{d t}=\left[\begin{array}{c}
d z / d t \\
d^{2} z / d t^{2}
\end{array}\right]
$$

Noting that $d^{2} z / d t^{2}=g(t, z, d z / d t)$,

$$
\frac{d \mathbf{y}}{d t}=\left[\begin{array}{c}
d z / d t \\
g(t, z, d z / d t)
\end{array}\right]
$$

From our definition of \mathbf{y}, we can see that $z=y_{1}$ and $d z / d t=y_{2}$. Making these substitutions,

$$
\frac{d \mathbf{y}}{d t}=\left[\begin{array}{c}
y_{2} \\
g\left(t, y_{1}, y_{2}\right)
\end{array}\right]
$$

Thus, we have

$$
\mathbf{f}(t, \mathbf{y})=\left[\begin{array}{c}
y_{2} \\
g\left(t, y_{1}, y_{2}\right)
\end{array}\right]
$$

Finally, defining \mathbf{y}_{0} using the initial conditions for z and $d z / d t$,

$$
\mathbf{y}_{0}=\left[\begin{array}{l}
z_{0} \tag{1.3}\\
z_{0}^{\prime}
\end{array}\right]
$$

For additional understanding, consider Example 1.2.1, which also demonstrates implementation of a vectorvalued differential equation in MATLAB.

Example 1.2.1: Converting a $3^{\text {rd-order }}$ IVP to a 1 st-order IVP.

Consider the following $3^{\text {rd }}$-order IVP:

$$
\frac{d^{3} b}{d x^{3}}=25 x^{2} b^{3} \frac{d^{2} b}{d x^{2}}+x b, \quad b\left(x_{0}\right)=5,\left.\quad \frac{d b}{d x}\right|_{x=x_{0}}=0,\left.\quad \frac{d^{2} b^{2}}{d x}\right|_{x=x_{0}}=-10
$$

Write this IVP as a 1st-order IVP and implement the resulting vector-valued differential equation in MATLAB.

SOLUTION

First, let's define the vector variable:

$$
\mathbf{y}=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=\left[\begin{array}{c}
b \\
d b / d x \\
d^{2} b / d x^{2}
\end{array}\right]
$$

Differentiating,

$$
\frac{d \mathbf{y}}{d x}=\left[\begin{array}{c}
d b / d x \\
d^{2} b / d x^{2} \\
d^{3} b / d x^{3}
\end{array}\right]
$$

Substituting the original ODE into the last element of $d \mathbf{y} / d x$,

$$
\frac{d \mathbf{y}}{d x}=\left[\begin{array}{c}
d b / d x \\
d^{2} b / d x^{2} \\
25 x^{2} b^{3}\left(d^{2} b / d x^{2}\right)+x b
\end{array}\right]
$$

Noting that $y_{1}=b, y_{2}=d b / d x$, and $y_{3}=d^{2} b / d x^{2}$, we get

$$
\frac{d \mathbf{y}}{d x}=\left[\begin{array}{c}
y_{2} \\
y_{3} \\
25 x^{2} y_{1}^{3} y_{3}+x y_{1}
\end{array}\right]
$$

Since, by convention, we write $d \mathbf{y} / d x=\mathbf{f}(x, \mathbf{y})$, we get

$$
\mathbf{f}(x, \mathbf{y})=\left[\begin{array}{c}
y_{2} \\
y_{3} \\
25 x^{2} y_{1}^{3} y_{3}+x y_{1}
\end{array}\right]
$$

Assembling the initial conditions into the vector \mathbf{y}_{0} (and recalling that $y_{1}=b, y_{2}=d b / d x$, and $y_{3}=d^{2} b / d x^{2}$),

$$
\mathbf{y}_{0}=\left[\begin{array}{c}
5 \\
0 \\
-10
\end{array}\right]
$$

To define the vector-valued differential equation and the corresponding initial condition in MATLAB,

```
% vector-valued differential equation
f = @(x,y) [y(2);y(3);
    25*x^2*y(1)^3*y(3)+x*y(1)];
% initial condition
y0 = [ 5;
    0;
    -10];
```


1.3 Converting Higher-Order IVPs to First-Order IVPs: The Vector Case

Higher order IVPs are not restricted to scalar variables; in fact, most of the time, the IVPs we deal with our higher-order IVPs where the dependent variable is a vector. The general form of such an IVP is shown in Eq. (1.4) below, where we assume that $\mathbf{z} \in \mathbb{R}^{p}$.

$$
\begin{equation*}
\frac{d^{m} \mathbf{z}}{d t^{m}}=\mathbf{g}\left(t, \mathbf{z}, \frac{d \mathbf{z}}{d t}, \ldots, \frac{d^{m-1} \mathbf{z}}{d t^{m-1}}\right), \quad \mathbf{z}\left(t_{0}\right)=\mathbf{z}_{0},\left.\quad \frac{d \mathbf{z}}{d t}\right|_{t=t_{0}}=\mathbf{z}_{0}^{\prime}, \quad \ldots,\left.\quad \frac{d^{m-1} \mathbf{z}}{d t^{m-1}}\right|_{t=t_{0}}=\mathbf{z}_{0}^{(m-1)} \tag{1.4}
\end{equation*}
$$

To convert Eq. (1.4) to a 1st-order IVP, we introduce Algorithm 2, which is essentially identical to Algorithm 1, just extended to the case of a vector dependent variable.

Algorithm 2:

Converting a higher-order IVP to a first-order IVP [vector dependent variable].

Given:

$\begin{array}{ll}\cdot \frac{d^{m} \mathbf{z}}{d t^{m}}=g\left(t, \mathbf{z}, \frac{d \mathbf{z}}{d t}, \frac{d^{2} \mathbf{z}}{d t^{2}}, \ldots, \frac{d^{m-1} \mathbf{z}}{d t^{m-1}}\right) & \text { - } m \text { th-order ODE } \\ \text { - } \mathbf{z}_{0}, \mathbf{z}_{0}^{\prime}, \mathbf{z}_{0}^{\prime \prime}, \ldots, \mathbf{z}_{0}^{(m-1)} \in \mathbb{R}^{p} & \text { - initial conditions }\end{array}$

Procedure:

1. Define the vector \mathbf{y} as the original dependent variable \mathbf{z} and its derivatives up to the $(m-1)$ th derivative.

$$
\mathbf{y}=\left[\begin{array}{c}
\mathbf{y}_{1: p} \\
\mathbf{y}_{(n+1): 2 p} \\
\mathbf{y}_{(2 n+1): 3 p} \\
\vdots \\
\mathbf{y}_{((m-1) n+1): m p}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{z} \\
d \mathbf{z} / d t \\
d^{2} \mathbf{z} / d t^{2} \\
\vdots \\
d^{n-1} \mathbf{z} / d t^{n-1}
\end{array}\right]
$$

In an expanded form, we write

2. Find the derivative of \mathbf{y}.

$$
\frac{d \mathbf{y}}{d t}=\left[\begin{array}{c}
d \mathbf{z} / d t \\
d^{2} \mathbf{z} / d t^{2} \\
d^{3} \mathbf{z} / d t^{3} \\
\vdots \\
d^{m} \mathbf{z} / d t^{m}
\end{array}\right]=\left[\begin{array}{c}
d z_{1} / d t \\
\vdots \\
d z_{p} / d t \\
d^{2} z_{1} / d t^{2} \\
\vdots \\
\frac{d^{2} z_{p} / d t^{2}}{d^{3} z_{1} / d t^{3}} \\
\vdots \\
\frac{d^{3} z_{p} / d t^{3}}{\vdots} \\
\frac{d^{m-1} z_{1} / d t^{m-1}}{\vdots} \\
d^{m-1} z_{p} / d t^{m-1}
\end{array}\right]
$$

3. Note that the original differential equation was defined as $d^{m} \mathbf{z} / d t^{m}=\mathbf{g}(\ldots)$.

Thus, we can substitute the function \mathbf{g} into the last component of $d \mathbf{y} / d t$.

$$
\frac{d \mathbf{y}}{d t}=\left[\begin{array}{c}
d z_{1} / d t \\
\vdots \\
d z_{p} / d t \\
d^{2} z_{1} / d t^{2} \\
\vdots \\
d^{2} z_{p} / d t^{2} \\
d^{3} z_{1} / d t^{3} \\
\vdots \\
d^{3} z_{p} / d t^{3} \\
\vdots \\
\hline \mathbf{g}\left(t, \mathbf{z}, \frac{d \mathbf{z}}{d t}, \frac{d^{2} \mathbf{z}}{d t^{2}}, \ldots, \frac{d^{m-1} \mathbf{z}}{d t^{m-1}}\right)
\end{array}\right]
$$

4. From step 1 , we can see that $\mathbf{z}=\left(y_{1}, \ldots, y_{p}\right)^{T}, d \mathbf{z} / d t=\left(y_{n+1}, \ldots, y_{2 p}\right)^{T}$, $d^{2} \mathbf{z} / d t^{2}=\left(y_{2 n+1}, \ldots, y_{3 p}\right)^{T}$, etc. Make these substitutions into the RHS of the equation from step 3 . This essentially gives us $\mathbf{f}(t, \mathbf{y})$.

$$
\frac{d \mathbf{y}}{d t}=\left[\begin{array}{c}
y_{n+1} \\
\vdots \\
y_{2 p} \\
y_{2 n+1} \\
\vdots \\
y_{3 p} \\
y_{3 n+1} \\
\vdots \\
y_{4 p} \\
\vdots \\
\mathbf{g}\left(t,\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{p}
\end{array}\right],\left[\begin{array}{c}
y_{n+1} \\
\vdots \\
y_{2 p}
\end{array}\right],\left[\begin{array}{c}
y_{2 n+1} \\
\vdots \\
y_{3 p}
\end{array}\right], \ldots,\left[\begin{array}{c}
y_{(m-1) n+1} \\
\vdots \\
y_{m p}
\end{array}\right]\right)
\end{array}\right]
$$

5. At this point, we have the function $\mathbf{f}(t, \mathbf{y})$ defining the vector-valued differential equation. Now, we just need to define its initial conditions.

$$
\mathbf{y}_{0}=\left[\begin{array}{c}
\mathbf{z}_{0} \\
\mathbf{z}_{0}^{\prime} \\
\mathbf{z}_{0}^{\prime \prime} \\
\vdots \\
\mathbf{z}_{0}^{(m-1)}
\end{array}\right]
$$

Return:

- $\mathbf{f}(t, \mathbf{y}) \quad$ - multivariate, vector-valued function $\left(\mathbf{f}: \mathbb{R}^{m p} \rightarrow \mathbb{R}^{m p}\right)$ defining the ODE $d \mathbf{y} / d t=\mathbf{f}(t, \mathbf{y})$
- $\mathbf{y}_{0} \in \mathbb{R}^{m p}$ - initial condition

Example 1.3.1: Converting a 2nd-order vector IVP to a lst-order IVP

Consider the following 2 nd-order IVP:

$$
\frac{d^{2} \mathbf{x}}{d t^{2}}=\left(x_{1}+x_{2}\right) \frac{d \mathbf{x}}{d t}+\mathbf{x} \frac{d x_{1}}{d t}, \quad \mathbf{x}_{0}=\left[\begin{array}{l}
0 \\
0
\end{array}\right], \quad \mathbf{x}_{0}^{\prime}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

where $\mathbf{x}=\left(x_{1}, x_{2}\right)^{T}$. Write this IVP as a 1st-order IVP and implement the resulting differential equation in MATLAB.

SOLUTION

First, let's define our new vector variable:

$$
\mathbf{y}=\left[\begin{array}{l}
\mathbf{y}_{1: 2} \\
\mathbf{y}_{3: 4}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{x} \\
d \mathbf{x} / d t
\end{array}\right]
$$

In an expanded form,

$$
\mathbf{y}=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4}
\end{array}\right]=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
d x_{1} / d t \\
d x_{2} / d t
\end{array}\right]
$$

Differentiating,

$$
\frac{d \mathbf{y}}{d x}=\left[\begin{array}{c}
d x_{1} / d t \\
d x_{2} / d t \\
d^{2} x_{1} / d t^{2} \\
d^{2} x_{2} / d t^{2}
\end{array}\right]
$$

Expanding the original ODE,

$$
\left\{\begin{array}{l}
\frac{d x_{1}^{2}}{d t^{2}}=\left(x_{1}+x_{2}\right) \frac{d x_{1}}{d t}+x_{1} \frac{d x_{1}}{d t} \\
\frac{d x_{2}^{2}}{d t^{2}}=\left(x_{1}+x_{2}\right) \frac{d x_{2}}{d t}+x_{2} \frac{d x_{1}}{d t}
\end{array}\right.
$$

Replacing the last two element of $d \mathbf{y} / d x$ with the above equation,

$$
\frac{d \mathbf{y}}{d x}=\left[\begin{array}{c}
d x_{1} / d t \\
d x_{2} / d t \\
\left(x_{1}+x_{2}\right) \frac{d x_{1}}{d t}+x_{1} \frac{d x_{1}}{d t} \\
\left(x_{1}+x_{2}\right) \frac{d x_{2}}{d t}+x_{2} \frac{d x_{1}}{d t}
\end{array}\right]
$$

Noting that $y_{1}=x_{1}, y_{2}=x_{2}$, and $y_{3}=d x_{1} / d t$, and $y_{4}=d x_{2} / d t$, we get

$$
\frac{d \mathbf{y}}{d x}=\left[\begin{array}{c}
y_{3} \\
y_{4} \\
\left(y_{1}+y_{2}\right) y_{3}+y_{1} y_{3} \\
\left(y_{1}+y_{2}\right) y_{4}+y_{2} y_{3}
\end{array}\right]
$$

Since, by convention, we write $d \mathbf{y} / d t=\mathbf{f}(t, \mathbf{y})$, we get

$$
\mathbf{f}(t, \mathbf{y})=\left[\begin{array}{c}
y_{3} \\
y_{4} \\
\left(y_{1}+y_{2}\right) y_{3}+y_{1} y_{3} \\
\left(y_{1}+y_{2}\right) y_{4}+y_{2} y_{3}
\end{array}\right]
$$

Assembling the initial conditions into the vector \mathbf{y}_{0} (and recalling that $\mathbf{y}_{1: 2}=\mathbf{x}$ and $\mathbf{y}_{3: 4}=d \mathbf{x} / d t$,

$$
\mathbf{y}_{0}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right]
$$

To define the vector-valued differential equation and the corresponding initial condition in MATLAB,

```
f = @(t,y) [y(3);
    y(4);
% initial condition
y0 = [0;
    0;
        1;
        1];
```

\% vector-valued differential equation
$(y(1)+y(2)) * y(3)+y(1) * y(3) ;$
(y(1)+y(2))*y(4)+y(2)*y(3)];

Defining Systems Mathematically and Computationally

2.1 State Vectors and State Space

In physics and engineering, most differential equations we deal with are second-order or higher. For example, consider the generic mass-spring-damper system shown in Fig. 2.1. If we assume that x is defined such that $x=0$ when the

Figure 2.1: Mass-spring-damper system.
spring is at equilibrium, then (ignoring gravity) we can draw the free body diagram shown in Fig. 2.2. From Newton's

Figure 2.2: Free body diagram of mass.
second law,

$$
F-k x-b \dot{x}=m \ddot{x}
$$

Solving for \ddot{x},

$$
\ddot{x}=-\left(\frac{b}{m}\right) \dot{x}-\left(\frac{k}{m}\right) x+\left(\frac{1}{m}\right) F
$$

If we know the initial conditions $x\left(t_{0}\right)=x_{0}$ and $\dot{x}\left(t_{0}\right)=\dot{x}_{0}$, then we have the following 2nd-order IVP:

$$
\begin{equation*}
\ddot{x}=-\left(\frac{b}{m}\right) \dot{x}-\left(\frac{k}{m}\right) x+\left(\frac{1}{m}\right) F, \quad x\left(t_{0}\right)=x_{0}, \quad \dot{x}\left(t_{0}\right)=\dot{x}_{0} \tag{2.1}
\end{equation*}
$$

Since IVP solvers are only suitable for solving 1st-order IVPs (as discussed previously), we need to convert the 2 nd-order IVP given by Eq. (2.1) to a 1st-order IVP. In the context of engineering, we do this by defining a state vector, which fully describes the state of the physical system. Essentially, the vector \mathbf{y} in Section 1.3 served as the state vector. There are two commonly used conventions for denoting a state vector as outlined in Convention 1 below.

Convention 1: State vector nornenclature.

- \mathbf{y} - used when defining/discussing IVP solvers, as in mathematics, " y " is typically used to denote the dependent variable
- \mathbf{x} - used in engineering contexts to denote the state of a physical system

The components of the state vector are referred to as state variables. A state variable is just a variable that helps describe some component of the mathematical state of a physical system. Thus, the state vector is essentially the set of state variables that fully describes the system.

But what counts as "fully describing" the system? Intuitively, we want the state variables (and thereby the state vector) to describe enough about the system for us to determine its future behavior in the absence of external forces acting on the system ${ }^{1}$. By "future behavior", we mean its position (i.e. trajectory) and its velocity. In the case of unforced motion in the mass-spring-damper system above, we only need the mass's position and velocity at one instant to completely determine its position and velocity at any time in the future [11, 12]. Therefore, our state variables in this case are

$$
\text { state variables }=x, \dot{x}
$$

Our state vector (i.e. collection of state variables) is then

$$
\mathbf{y}=\left[\begin{array}{l}
x \\
\dot{x}
\end{array}\right]
$$

Note that in this case, we violate Convention 1 and denote our state vector as \mathbf{y}. We do this because when we go to input the math into a computer, it will be easier to do if we don't have so many x 's floating around.

Now that we've decided on our state-vector, we want to rewrite the 2nd-order IVP given by Eq. (2.1) as a 1 st-order IVP in terms of the state vector. Mathematically ${ }^{2}$, the goal is to write

$$
\begin{equation*}
\dot{\mathbf{y}}=\mathbf{f}(t, \mathbf{y}), \quad \mathbf{y}\left(t_{0}\right)=\mathbf{y}_{0} \tag{2.2}
\end{equation*}
$$

To do this, we can use an identical procedure to that taken in Section 1.2. If $\mathbf{y}=(x, \dot{x})^{T}$ is our state vector, then the derivative of the state vector is $\dot{\mathbf{y}}=(\dot{x}, \ddot{x})^{T}$. Therefore, we can write the following system of differential equations,

[^1]$$
\dot{\mathbf{x}}=\mathbf{A} \mathbf{x}+\mathbf{B u}
$$
where we would find that
\[

\overbrace{\left[$$
\begin{array}{c}
\dot{x} \\
\ddot{x}
\end{array}
$$\right]}^{\dot{\mathbf{x}}}=\overbrace{\left[$$
\begin{array}{cc}
0 & 1 \\
-k / m & -b / m
\end{array}
$$\right]}^{\mathbf{A}} \overbrace{\left[$$
\begin{array}{l}
x \\
\dot{x}
\end{array}
$$\right]}^{\mathbf{x}}+\overbrace{\left[\frac{1}{m}\right]}^{\mathbf{B}} \overbrace{[f]}^{\mathbf{u}}
\]

In the general case, \mathbf{u} is typically a function of \mathbf{x} and t, so we could define the function $\mathbf{f}(t, \mathbf{x})$ as

$$
\mathbf{f}(t, \mathbf{x})=\mathbf{A} \mathbf{x}+\mathbf{B u}(t, \mathbf{x})
$$

in order to simulate the system with an IVP solver.
together with their initial conditions:

$$
\left\{\begin{array}{l}
\dot{x}=\dot{x} \\
\ddot{x}=-\left(\frac{b}{m}\right) \dot{x}-\left(\frac{k}{m}\right) x+\left(\frac{1}{m}\right) F \quad, \quad\left\{\begin{array}{l}
x\left(t_{0}\right)=x_{0} \\
\dot{x}\left(t_{0}\right)=\dot{x}_{0}
\end{array}\right. \text { }
\end{array}\right.
$$

In matrix form, these can be written as

$$
\left[\begin{array}{c}
\dot{x} \tag{2.3}\\
\ddot{x}
\end{array}\right]=\left[\begin{array}{c}
\dot{x} \\
-\left(\frac{b}{m}\right) \dot{x}-\left(\frac{k}{m}\right) x+\left(\frac{1}{m}\right) F
\end{array}\right], \quad\left[\begin{array}{l}
x\left(t_{0}\right) \\
\dot{x}\left(t_{0}\right)
\end{array}\right]=\left[\begin{array}{l}
x_{0} \\
\dot{x}_{0}
\end{array}\right]
$$

Since we know $\mathbf{y}=(x, \dot{x})^{T}$ and $\dot{\mathbf{y}}=(\dot{x}, \ddot{x})^{T}$, we can simply compare Eq. (2.3) to Eq. (2.2) to find that

$$
\dot{\mathbf{y}}=\mathbf{f}(t, \mathbf{y})=\left[\begin{array}{c}
\dot{x} \\
-\left(\frac{b}{m}\right) \dot{x}-\left(\frac{k}{m}\right) x+\left(\frac{1}{m}\right) F
\end{array}\right], \quad \mathbf{y}_{0}=\left[\begin{array}{l}
x_{0} \\
\dot{x}_{0}
\end{array}\right]
$$

Another source of confusion at this point can be the fact that in the equation above, we wrote the left hand side as $\mathbf{f}(t, \mathbf{y})$, but the right hand side is not explicitly a function of \mathbf{y}; rather, it is a function of the components (i.e. x and \dot{x}) of \mathbf{y}. If we wanted to be overly-rigorous, we could distinguish the two as

$$
\mathbf{f}(t, x, \dot{x})=\left[\begin{array}{c}
\dot{x} \\
-\left(\frac{b}{m}\right) \dot{x}-\left(\frac{k}{m}\right) x+\left(\frac{1}{m}\right) F
\end{array}\right], \quad \mathbf{f}(t, \mathbf{y})=\left[\begin{array}{c}
\mathbf{y}^{T}\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
-\left(\frac{b}{m}\right) \mathbf{y}^{T}\left[\begin{array}{l}
0 \\
1
\end{array}\right]-\left(\frac{k}{m}\right) \mathbf{y}^{T}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+\left(\frac{1}{m}\right) F
\end{array}\right]
$$

However, making this distinction is unnecessary in both a mathematical sense and a practical sense; when programming these equations, it is trivial to access an element of a vector - we do not need to use dot products to do this.

This brings us to the topic of actually programming these functions. As with many concepts, there can be a substantial disconnect between writing these equations down on paper and actually implementing them in a computer. Consequently, the best way to explain how to do it is to show by example. There are two main approaches we use, which we outline in Convention 2. Both conventions are used in Example 2.1.1.

Convention 2: Programming a differential equation.

There are two main approaches to programming a differential equation:

1. Using a change of variables.

This is manageable for simple systems (this is the approach we took previously in Examples 1.2 .1 and 1.3.1). We use this method under "SOLUTION" in the example below.
2. "Unpacking the state vector", performing calculations, and "assembling the state vector derivative".
Results in slightly longer code, but much easier/more intuitive to read; this is the method we use most often, especially for more complex systems. We use this method under "ALTERNATE SOLUTION" in the example below.

Example 2.1.1: Implementing the mass spring damper IVP in MATLAB.

Recall the 2nd-order IVP (Eq. (2.1)) governing the mass-spring-damper system shown in Fig. 2.1.

$$
\begin{equation*}
\ddot{x}=-\left(\frac{b}{m}\right) \dot{x}-\left(\frac{k}{m}\right) x+\left(\frac{1}{m}\right) F, \quad x\left(t_{0}\right)=x_{0}, \quad \dot{x}\left(t_{0}\right)=\dot{x}_{0} \tag{2.1}
\end{equation*}
$$

For this example, assume the following values:

$$
b=5(\mathrm{~N} \cdot \mathrm{~s}) / \mathrm{m}, \quad k=1 \mathrm{~N} / \mathrm{m}, \quad m=2 \mathrm{~kg}, \quad x_{0}=1 \mathrm{~m}, \quad \dot{x}_{0}=0 \mathrm{~m} / \mathrm{s}
$$

Additionally, let $F(t)$ be given by

$$
F(t)=\cos \pi t
$$

Implement a vector-valued differential equation $\mathbf{f}(t, \mathbf{y})$ and initial condition \mathbf{y}_{0} (as shown below) in MATLAB that describes the evolution of this system.

$$
\dot{\mathbf{y}}=\mathbf{f}(t, \mathbf{y}), \quad \mathbf{y}\left(t_{0}\right)=\mathbf{y}_{0}
$$

SOLUTION

We can begin by defining known quantities and the forcing function.

```
% parameters
b = 5; % damping constant [N.s/m]
k = 1; % spring constant [N/m]
m = 2; % mass [kg]
x0 = 1; % initial position [m]
xdot0 = 0; % initial velocity [m/s]
% forcing function
F = @(t) cos(pi*t);
```

From our work before this example, we already found that

$$
\mathbf{y}=\left[\begin{array}{c}
x \tag{2.4}\\
\dot{x}
\end{array}\right], \quad \mathbf{f}(t, \mathbf{y})=\left[\begin{array}{c}
\dot{x} \\
-\left(\frac{b}{m}\right) \dot{x}-\left(\frac{k}{m}\right) x+\left(\frac{1}{m}\right) F
\end{array}\right], \quad \mathbf{y}_{0}=\left[\begin{array}{l}
x_{0} \\
\dot{x}_{0}
\end{array}\right]
$$

Writing the initial condition in MATLAB,

```
% initial condition
y0 = [x0;
    xdot0];
```

Now, we must bridge the gap between the mathematical definition of \mathbf{y} and how the computer "sees" \mathbf{y}. In the computer, y is just a 2×1 array that has the indices 1 and 2 . Therefore, what the computer sees is

$$
\mathbf{y}=\left[\begin{array}{l}
y_{1} \tag{2.5}\\
y_{2}
\end{array}\right]
$$

If we compare Eqs. (2.4) (which is the mathematical definition of the state vector) and (2.5) (which is the state vector used by the computer), we can see that

$$
x=y_{1}, \quad \dot{x}=y_{2}
$$

This essentially represents a change of variables; we now use y_{1} to denote x and y_{2} to denote \dot{x}. Performing this change of variables in Eq. (2.4),

$$
\mathbf{f}(t, \mathbf{y})=\left[\begin{array}{c}
y_{2} \\
-\left(\frac{b}{m}\right) y_{2}-\left(\frac{k}{m}\right) y_{1}+\left(\frac{1}{m}\right) F
\end{array}\right]
$$

In MATLAB, we can write

```
% differential equation
f = @(t,y) [ y(2);
    -(b/m)*y(2)-(k/m)*y(1)+(1/m)*F(t)];
```


ALTERNATE SOLUTION

While the solution above is adequate for simple functions, it is more cumbersome to use for complicated functions. Additionally, it makes the code less "readable" - all the state variables are written as elements of the state vector, so it is difficult to see what they physically represent. A better solution, especially when dealing with more complex systems, is to "unpack" the state vector, perform all calculations, and then assemble the state vector derivative. Again, this is best explained by just showing the solution in MATLAB.

There are multiple things to note, however, when defining the differential equation:

1. We first define a local function f _extra, which must be located at the very end of the script.
2. To be able to later use f _extra in an IVP solver, we assign it the function handle f.
3. We named the local function f_extra because it has some extra input parameters beyond what f will have (f can only have the input parameters t and y due to how IVP solvers are defined). See Section 2.3.1 for more information on passing extra parameters.
```
% parameters
b = 5; % damping constant [N.s/m]
k = 1; % spring constant [N/m]
m = 2; % mass [kg]
x0 = 1; % initial position [m]
xdot0 = 0; % initial velocity [m/s]
% forcing function
F = @(t) cos(pi*t);
% initial condition
y0 = [x0;
        xdot0];
% assigns function handle to differential equation
f = @(t,y) f_extra(t,y,b,k,m,F);
% defines differential equation
function ydot = f_extra(t,y,b,k,m,F)
    % unpacks state vector
    x = y(1);
    xdot = y(2);
        % preallocates state vector derivative
```

```
    ydot = zeros(size(y));
    % assembles state vector derivative
    ydot(1) = xdot;
    ydot(2) = -(b/m)*xdot-(k/m)*x+(1/m)*F(t);
end
```


2.2 Coupled ODEs

Consider the coupled mass-spring-damper system shown in Fig. 2.3. Using Newton's second law, one can derive the

Figure 2.3: Coupled mass-spring-damper system.
following equations of motion for the two blocks:

$$
\begin{aligned}
& \ddot{x}_{1}=-\left(\frac{k_{1}+k_{2}}{m_{1}}\right) x_{1}+\left(\frac{k_{2}}{m_{1}}\right) x_{2}-\left(\frac{b}{m_{1}}\right) \dot{x}_{1} \\
& \ddot{x}_{2}=\left(\frac{k_{2}}{m_{2}}\right) x_{1}-\left(\frac{k_{2}}{m_{2}}\right) x_{2}+F(t)
\end{aligned}
$$

\ddot{x}_{1} and \ddot{x}_{2} are both 2nd-order ODEs, and they are coupled to one another (x_{1} and x_{2} appear in both equations). Since they are coupled, we cannot solve one without solving the other simultaneously. In the context of IVP solvers, we will still need to represent the system using a single 1st-order vector-valued ODE. To do this, we can simply define the state vector for the overall system as

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
\dot{x}_{1} \\
x_{2} \\
\dot{x}_{2}
\end{array}\right]
$$

Then the time derivative of the state vector is

$$
\dot{\mathbf{x}}=\left[\begin{array}{l}
\dot{x}_{1} \\
\ddot{x}_{1} \\
\dot{x}_{2} \\
\ddot{x}_{2}
\end{array}\right]
$$

Since $\dot{\mathbf{x}}=\mathbf{f}(t, \mathbf{x})$, we have

$$
\dot{\mathbf{x}}=\mathbf{f}(t, \mathbf{x})=\left[\begin{array}{c}
\dot{x}_{1} \\
-\left(\frac{k_{1}+k_{2}}{m_{1}}\right) x_{1}+\left(\frac{k_{2}}{m_{1}}\right) x_{2}-\left(\frac{b}{m_{1}}\right) \dot{x}_{1} \\
\dot{x}_{2} \\
\left(\frac{k_{2}}{m_{2}}\right) x_{1}-\left(\frac{k_{2}}{m_{2}}\right) x_{2}+F(t)
\end{array}\right]
$$

2.3 Extra Parameters

2.3.1 Passing Extra Parameters

Consider the function $f(x, y)=-a(x-b)^{2}-c(y-d)^{2}$ where x and y are independent variables, and a, b, c, and d are constants. In MATLAB, we can program this in two ways:

1. as an anonymous function
2. as a MATLAB function

As an anomymous function, we can program $f(x, y)$ as

```
f = @(x,y) -a*(x-b)^2-c*(y-d)^2;
```

In the above function definition, a, b, c, and d must already have been initialized. Whenever the function $f(x, y)$ is called, it well than use the values of a, b, c, and d at the time f was defined. Consider the snippet of code below:

```
% function definition
a = 5; b = 5; c = 5; d = 5;
f = @(x,y) -a*(x-b)^2-c*(y-d)^2;
% call function, update "a", then call function again
f(2,2)
a = 20;
f(2,2)
```

Both calls of $f(2,2)$ will evaluate to the same result because $f(2,2)$ will still be using a $=5$ both times. Now, say that we want to update the values of the constants in $f(x, y)$. We could do the following:

```
% original function definition
a = 5; b = 5; c = 5; d = 5;
f = @(x,y) -a*(x-b)^2-c*(y-d)^2;
% update values of constants
a = 10; b = 10; c = 10; d = 10;
f = @(x,y) -a*(x-b)^2-c*(y-d)^2;
```

An alternate way to do this is

```
% define function where constants can vary as well
f_extra = @(x,y,a,b,c,d) -a*(x-b)^2-c*(y-d)^2;
% define original function by assigning function handle to f_extra
f = @(x,y) f_extra(x,y,5,5,5,5);
% update values of constants
f = @(x,y) f_extra(x,y,10,10,10,10);
```

The code above demonstrates the concept of passing extra parameters [8]. Typically, our functions will have constants in them who's values are stored in variables. However, for IVP solvers in particular, we can only pass in
functions of the form $f(t, y)$. Therefore, if we want to be able to easily vary the parameter values later, we first define a function f_extra (where the "extra" denotes that "extra" parameters are being passed), and then assign it a new function handle.

In many cases, we have really complicated functions that could be calculated in steps across $10+$ lines of code. In these cases, the functions must be defined as MATLAB functions. For the same equation as considered above, we could write

```
function f = f_extra(x,y,a,b,c,d)
    f = -a*(x-b)^2-c*(y-d)^2;
end
```

We can assign function handles to MATLAB functions as well, and essentially treat them like anonymous functions thereafter. Assigning f_extra a function handle just like before (and with the same parameter values),

```
a = 10; b = 10; c = 10; d = 10;
f = @(x,y) f_extra(x,y,a,b,c,d);
```


2.3.2 Recovering Extra Parameters

From the block diagrams in Section 3.4, we can see that IVP solvers only output (a) the time vector and (b) a matrix storing the solution at each time in the time vector. However, oftentimes, the functions we pass to the IVP solvers will be very complicated functions within which many other quantities are calculated. As an example, for rocket simulations, the function defining the differential equation will be calculating the force due to drag at every time step. The drag force is a function of both the rocket's position (drag depends on air density, air density decreases with altitude) and velocity. However, there is no way for the IVP solver to directly output the drag force.

The workaround is to define the differential equation so that it returns more than just the state vector derivative. An example of how we typically define functions representing differential equations is

```
f = @(t,y) f_extra(t,y,a);
```

where

```
function f = f_extra(t,y,a);
    x = 2*a-5;
    f = x^2;
end
```

However, consider the case where we want to recover a variable x that is calculated inside of f _extra. Then we can instead define f_extra as

```
function [f,x] = f_extra(t,y,a);
    x = 2*a-5;
    f = x^2;
end
```

We can still assign a function handle to $£$ _extra, just like before. When we do so, only the first output parameter (f) of f _extra will be returned.
$\overline{A t}$ this point, we have all the ingredients we need in order to be able to recover extra parameters. The overall process is best explained using an example - see Example 2.3.1 below.

Example 2.3.1: Recovering extra parameters from an IVP solution.

Solve the following IVP on the interval $[0,10]$:

$$
\frac{d \mathbf{y}}{d t}=x \mathbf{y} \quad \text { where } \quad x=2 a-5 t, \quad a=5, \quad \mathbf{y}_{0}=(1,1)^{T}
$$

Then, plot $x(t)$ over this interval.

SOLUTION

```
% assign function handle and pass extra parameter
f = @(t,y) f_extra(t,y,5);
% solve IVP
y0 = [1;1];
t0 = 0;
tf = 10;
[t,y] = ode45(f,[t0,tf],y0);
% recover "x" at every time step
x = zeros(size(t));
for i = 1:length(t)
    [~,x(i)] = f(t(i),y(i,:)');
end
% plot x vs. t
figure;
plot(t,x,'linewidth',1.5,'color',[0.5490,0.0824,0.0824]);
grid on;
xlabel('$t$','Interpreter','latex','FontSize',18);
ylabel('$x$','Interpreter','latex','FontSize',18);
% MATLAB function must be declared at end
function [f,x] = f_extra(t,y,a)
    x = 2*a-5*t;
    f = x*y;
end
```


IVP Solvers for Vector-Valued Initial Value Problems

3.1 The General Solution

Consider the initial value problem

$$
\frac{d \mathbf{y}}{d t}=\mathbf{f}(t, \mathbf{y}), \quad \mathbf{y}\left(t_{0}\right)=\mathbf{y}_{0}
$$

Solving for $\mathbf{y}(t)$,

$$
\begin{gather*}
\mathbf{y}(t)-\underbrace{\mathbf{y}\left(t_{0}\right)}_{\mathbf{y}_{0}}=\int_{t_{0}}^{t} \mathbf{f}(t, \mathbf{y}) d t \\
\mathbf{y}(t)=\mathbf{y}_{0}+\int_{t_{0}}^{t} \mathbf{f}(t, \mathbf{y}) d t \tag{3.1}
\end{gather*}
$$

3.2 Discretization and Solution Arrays

In many cases, we cannot analytically evaluate the integral in Eq. (3.1) (hence our need for IVP solvers). The solution is to approximate the result by discretizing time, sample $\mathbf{f}(t, \mathbf{y})$ at those discrete points in time, and then assume that $\mathbf{f}(t, \mathbf{y})$ behaves a certain way between the two sample times ${ }^{1}$. A visual representation of a scalar-valued ODE sampled at discrete points in time is shown in Fig. 3.1.

Using IVP solvers, we find the solution, $\mathbf{y}(t)$, at these discrete points in time, which we call sample times. The

[^2]

Figure 3.1: Discretization of an ODE in time.
corresponding time vector storing the sample times, $\mathbf{t} \in \mathbb{R}^{N+1}$, is defined as

$$
\mathbf{t}=\left[\begin{array}{c}
t_{0} \tag{3.2}\\
t_{1} \\
t_{2} \\
\vdots \\
t_{N}
\end{array}\right]=\left[\begin{array}{c}
t_{0} \\
t_{0}+h \\
t_{0}+2 h \\
\vdots \\
t_{0}+(N-1) h \\
t_{N}
\end{array}\right]
$$

The step size or time step between two points in time, h, is defined as

$$
\begin{equation*}
h=t_{n+1}-t_{n} \tag{3.3}
\end{equation*}
$$

For fixed-step solvers (what we cover in this text), h is constant.

The solution matrix, $[\mathbf{y}]$, stores the solution $\mathbf{y}(t)$ at the discrete points in time specified by the time vector. There are two different forms the solution matrix can be written in, as shown in Eq. (3.4). These different forms are discussed in more detail in Sections 3.2.1 and 3.2.2.

$$
[\mathbf{y}]=\underbrace{\left[\begin{array}{c}
\mathbf{y}_{0}^{T} \tag{3.4}\\
\mathbf{y}_{1}^{T} \\
\mathbf{y}_{2}^{T} \\
\vdots \\
\mathbf{y}_{N}^{T}
\end{array}\right]}_{\text {row form }}=\underbrace{\left[\begin{array}{lllll}
\mathbf{y}_{0} & \mathbf{y}_{1} & \mathbf{y}_{2} & \cdots & \mathbf{y}_{N}
\end{array}\right]}_{\text {column form }}
$$

3.2.1 Solution Matrix: Row Form

In row form, the nth row of $[\mathbf{y}]$ stores \mathbf{y}_{n}^{T}, where $\mathbf{y}_{n}=\mathbf{y}\left(t_{n}\right) \in \mathbb{R}^{p}$ is the solution of the IVP at time t_{n}.

$$
[\mathbf{y}]=\left[\begin{array}{c}
\mathbf{y}_{0}^{T} \tag{3.5}\\
\mathbf{y}_{1}^{T} \\
\mathbf{y}_{2}^{T} \\
\vdots \\
\mathbf{y}_{N}^{T}
\end{array}\right] \in \mathbb{R}^{(N+1) \times p}
$$

This is the form in which the IVP solver (Algorithm 3) returns the solution to an IVP. This is also the form that MATLAB's ODE suite returns the solution to IVPs.

3.2.2 Solution Matrix: Column Form

In column form, the nth column of $[\mathbf{y}]$ stores \mathbf{y}_{n}, where $\mathbf{y}_{n}=\mathbf{y}\left(t_{n}\right) \in \mathbb{R}^{p}$ is the solution of the IVP at time t_{n}.

$$
[\mathbf{y}]=\left[\begin{array}{lllll}
\mathbf{y}_{0} & \mathbf{y}_{1} & \mathbf{y}_{2} & \cdots & \mathbf{y}_{N} \tag{3.6}
\end{array}\right] \in \mathbb{R}^{p \times(N+1)}
$$

During the solution process, it is more convenient to work with $[\mathbf{y}]$ in column form, as shown in Eq. (3.6). During most of Algorithm 3, the solution matrix is in column form. Additionally, Algorithm 4 also assumes that the solution matrix is in this form. However, for the IVP solver to return the solution matrix in the row form defined by Eq. 3.5, we need to remember to take its transpose at the end of the solution process.

$$
[\mathbf{y}] \leftarrow[\mathbf{y}]^{T}
$$

3.3 A Brute Force Solution Method

One of the primary applications of IVP solvers is trajectory simulation. As a first introduction to the numerical solution to a trajectory, undergraduate courses often start with the fact that (a) velocity, \mathbf{v}, is the derivative of position, \mathbf{r}, and (b) acceleration, \mathbf{a}, is the derivative of velocity.

$$
\mathbf{v}=\frac{d \mathbf{r}}{d t}, \quad \mathbf{a}=\frac{d \mathbf{v}}{d t}
$$

If we know the initial position and velocity $\left(\mathbf{r}_{0}=\mathbf{r}\left(t_{0}\right)\right.$ and $\mathbf{v}_{0}=\mathbf{v}\left(t_{0}\right)$, respectively) at the initial time t_{0}, and if we know the acceleration as a function of time, position, and acceleration (i.e. $\mathbf{a}=\mathbf{a}(t, \mathbf{r}, \mathbf{v})$), then to find the position and velocity at any time t, we must evaluate the following expressions:

$$
\begin{aligned}
& \mathbf{v}(t)=\mathbf{v}\left(t_{0}\right)+\int_{t_{0}}^{t} \mathbf{a}(t, \mathbf{r}, \mathbf{v}) d t \\
& \mathbf{r}(t)=\mathbf{r}\left(t_{0}\right)+\int_{t_{0}}^{t} \mathbf{v}(t, \mathbf{r}, \mathbf{v}) d t
\end{aligned}
$$

In simple cases, such as when a is a constant or is an integrable function of t, then we can evaluate these integrals analytically. However, in most cases, a is a very complicated function, and it is impossible or very difficult to solve these integrals analyically.

A first approach to solving such a problem numerically is discretizing time into very small increments (i.e. $t_{n+1}=t_{n}+\Delta t$, as illustrated in Figure 3.1), and assuming that the velocity and acceleration remain constant over those small time intervals. Mathematically, if we know the position, $\mathbf{r}_{n}=\mathbf{r}\left(t_{n}\right)$, velocity, $\mathbf{v}_{n}=\mathbf{v}\left(t_{n}\right)$, and acceleration, $\mathbf{a}_{n}=\mathbf{a}\left(t_{n}\right)$, at the nth sample time, t_{n}, then at the next (i.e. $(n+1)$ th) sample time, t_{n+1}, we have

$$
\begin{aligned}
& \mathbf{v}_{n+1}=\mathbf{v}_{n}+\int_{t_{n}}^{t_{n+1}} \mathbf{a}_{n} d t \\
& \mathbf{r}_{n+1}=\mathbf{r}_{n}+\int_{t_{n}}^{t_{n+1}} \mathbf{v}_{n} d t
\end{aligned}
$$

Since we have assumed that \mathbf{a}_{n} and \mathbf{v}_{n} are constant over a short interval of time Δt, and since $\Delta t=t_{n+1}-t_{n}$,

$$
\begin{aligned}
\mathbf{v}_{n+1} & =\mathbf{v}_{n}+\mathbf{a}_{n} \Delta t \\
\mathbf{r}_{n+1} & =\mathbf{r}_{n}+\mathbf{v}_{n} \Delta t
\end{aligned}
$$

For physical systems, we typically have an expression of the acceleration as $\mathbf{a}=\mathbf{a}(t, \mathbf{r}, \mathbf{v})$ from Newton's second law (i.e. it is our equation of motion/dynamics model). Thus, we calculate \mathbf{a}_{n} using

$$
\mathbf{a}_{n}=\mathbf{a}\left(t_{n}, \mathbf{r}_{n}, \mathbf{v}_{n}\right)
$$

See Example 3.3.1 below for an example of this approach to solving a simple problem involving Newton's laws. We refer to this approach as a brute force approach for two main reasons:

1. It uses the simplest and least accurate approximation available (this is actually the Euler method; see Section 5.2).
2. It is problem-specific; that is, as you will see in the code in the example, for every single problem, you'd have to manually edit some aspects of the "solver".

Example 3.3.1: Brute force solution to the motion of a car.

Consider a car of mass $m=1500 \mathrm{~kg}$, cross-sectional area $A=2.5 \mathrm{~m}^{2}$, and drag coefficient $C_{D}=0.25$ that starts from rest at $x=0 \mathrm{~m}$. A constant force of $F_{\text {eng }}=4500 \mathrm{~N}$ is supplied by the engine to move the car. Find the velocity and acceleration of the car, as well as the drag force acting on the car, when the car is at a position of $x=300 \mathrm{~m}$. Assume a constant air density of $\rho=1.2 \mathrm{~kg} / \mathrm{m}^{3}$.

SOLUTION

Applying Newton's Second Law to find the acceleration yields

$$
a=\frac{F_{\mathrm{eng}}-F_{D}}{m}
$$

where the drag force, F_{D}, is given by

$$
F_{D}=\frac{1}{2} C_{D} A \rho v^{2}
$$

Implementing a "brute force" approach in MATLAB to numerically solve for the resulting motion,

```
% car parameters
m = 1500; % mass [kg]
A = 2.5; % cross-sectional area [m^2]
CD = 0.25; % drag coefficient [-]
F_eng = 4500; % applied force [N]
% IVP parameters
x0 = 0; % initial position [m]
v0 = 0; % initial velocity [m/s]
xf = 300; % final position [m]
% physical parameters
rho = 1.2; % air density [kg/m^3]
% computational parameters
dt = 0.1; % time step [s]
% preallocate arrays
t = zeros(10000,1);
x = zeros(size(t));
v = zeros(size(t));
a = zeros(size(t));
% solves initial value problem
n = 1;
```

```
while x(n) < xf
    % calculates drag force [N]
    FD = 0.5*CD*A*rho*V(n)^2;
    % calculates acceleration [m/s^2]
    a(n) = (F_eng-FD)/m;
    % integrates acceleration to find velocity [m/s]
    v(n+1) = v(n)+a(n)*dt;
    % integrates velocity to find position [m]
    x(n+1) = x(n)+v(n)*dt;
    % increments loop index
    n = n+1;
end
% trims arrays
t = t(1:(n-1));
x = x(1:(n-1));
v = v(1:(n-1));
a = a(1:(n-1));
% velocity and acceleration of car when position is x = 300 m
v300 = v(end);
a300 = a(end);
% prints results
fprintf(" velocity = %.3f m/s\n",v300)
fprintf("acceleration = %.3f m/s^2\n",a300)
fprintf(" drag force = %.3f N\n\n",FD)
```

The code above produces the following results:

```
    velocity = 40.853 m/s
acceleration = 2.583 m/s^2
    drag force = 625.858 N
```


3.4 General Form of an IVP solver

An IVP solver (where "IVP" stands for "initial value problem") is a computational function that solves initial value problems defined using ordinary differential equations. IVP solvers act as a black box; we pass them a very complicated, vector-valued differential equation, an initial condition, an initial time, some termination condition (more on this later), and a step size, and it magically returns the solution over some interval of time. This basic functionality is depicted as a block diagram in Fig. 3.2. Figure 3.2 depicts the block diagram of a generic IVP solver. The input and output parameters of this generic IVP solver are defined in more detail in Tables 3.1 and 3.2. Note that the termination condition is somewhat ambiguous here, as it depends on what "mode" the IVP solver is operating in. Specifically, there are two basic "modes" of IVP solvers, discussed in Sections 3.6 and 3.7, that differ in how the solver is terminated:

1. time detection mode - the IVP is solved until some specified final time (see Section 3.6)

Figure 3.2: IVP solver block diagram.
2. event detection mode - the IVP is solved until some event occurs (see Section 3.7)

Table 3.1: Inputs to an IVP solver.

Variable	Name	Description
$\mathbf{f}(t, \mathbf{y}) \in \mathbb{R}^{N+1}$	ODE	multivariate, vector-valued function $\left(\mathbf{f}: \mathbb{R} \times \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}\right)$ defining the ordinary differential equation $d \mathbf{y} / d t=\mathbf{f}(t, \mathbf{y})$
$\mathbf{y} \in \mathbb{R}^{p}$	initial condition	initial condition $\mathbf{y}_{0}=\mathbf{y}\left(t_{0}\right)$
[termination condition]	termination condition	condition to terminate the IVP solver, see Sections 3.6 and 3.7
$t_{0} \in \mathbb{R}$	initial time	initial time
$h \in \mathbb{R}$	step size	step size between sample times $\left(t_{n+1}=t_{n}+h\right)$

Table 3.2: Outputs of an IVP solver.

Variable	Name	Description
$\mathbf{t} \in \mathbb{R}^{N+1}$	time vector	stores sequence of sample times (see Section 3.2)
		Stores the solution $\mathbf{y}(t)$ at discrete points in time. $[\mathbf{y}] \in \mathbb{R}^{(N+1) \times p}$ solution matrixSpecifically, the nth row of $[\mathbf{y}]$ stores \mathbf{y}_{n}^{T}, where $\mathbf{y}_{n}=\mathbf{y}\left(t_{n}\right) \in \mathbb{R}^{p}$ is the solution of the IVP at time t_{n} $\left(\right.$ where time t_{n} is stored in the nth element of $\left.\mathbf{t}\right)$.

3.5 Propagation Functions

In Section 3.4, we discussed solving IVPs over some time span $\left[t_{0}, t_{f}\right]$, obtaining the results at intermediate sample times. To obtain the solutions at these intermediate sample times, we use propagation functions. Specifically, we use a propagation function to find the solution at the next sample time, given the solution at the current sample time, and maybe at previous sample times as well. There are two general types of propagation functions; single-step propagation functions (for single-step methods; see Section 3.5.1), and multistep propagation functions (for multistep methods; see Section 3.5.2).

3.5.1 Single-Step Methods and One-Step Propagation

Single-step methods (see Chapter 5) require only the solution at the current sample time to find the solution at the next sample time. The general operation of a single-step propagation function is defined by Eq. (3.7) and illustrated in Fig. 3.3.

$$
\begin{equation*}
\mathbf{y}_{n+1}=\mathbf{g}\left(t_{n}, \mathbf{y}_{n}\right) \tag{3.7}
\end{equation*}
$$

Figure 3.3: Single-step propagation function.
The IVP Solver Toolbox uses propagation functions to build up the solution to an IVP over a time span. However, in some cases (such as discretizing a function), it is useful to just return the solution, \mathbf{y}, at the very next sample time (i.e. \mathbf{y}_{n+1} at time t_{n+1}), given the solution at the current sample time (i.e. \mathbf{y}_{n} at time t_{n}). We refer to this as one-step propagation, since the state vector (i.e. the solution) is being propagated forward "one step" in time. Single-step solvers are ideally suited to serve as "one-step propagators", since the solution at the subsequent sample time only depends on the solution at the current sample time.

3.5.2 Multistep Methods

In contrast to single-step methods (which only require the solution at the current sample time to find the solution at the next sample time), multistep methods (see Chapters 6 and 7) utilize the solutions at previous sample times to approximate the solution at the next sample time. Specifically, a multistep method of order m will evaluate $\mathbf{f}(t, \mathbf{y})$ at m sample times:

1. $\mathbf{f}\left(t_{n}, \mathbf{y}_{n}\right)$
2. $\mathbf{f}\left(t_{n-1}, \mathbf{y}_{n-1}\right)$
3. $\mathbf{f}\left(t_{n-2}, \mathbf{y}_{n-2}\right)$
m. $\mathbf{f}\left(t_{n-m+1}, \mathbf{y}_{n-m+1}\right)$
Typically, function evaluations are the most expensive computation in an IVP solver. To avoid repeating function evaluations unnecessarily, we define the matrix $\mathbf{F}_{n} \in \mathbb{R}^{p \times(m+1)}$ at the nth sample time as

$$
\mathbf{F}_{n}=\left[\begin{array}{l|l|l|l|l|}
\mathbf{f}\left(t_{n}, \mathbf{y}_{n}\right) & \mathbf{f}\left(t_{n-1}, \mathbf{y}_{n-1}\right) & \mathbf{f}\left(t_{n-2}, \mathbf{y}_{n-2}\right) & \cdots & \mathbf{f}\left(t_{n-m+1}, \mathbf{y}_{n-m+1}\right) \tag{3.8}\\
& \left.\mathbf{y}_{n}\right]
\end{array}\right]
$$

The first column of \mathbf{F} stores \mathbf{f} evaluated the current sample time, the next $m-1$ columns store the evaluations of \mathbf{f} for the previous $m-1$ sample times, and the $(m+1)$ th column of \mathbf{F} stores the solution at the current sample time, \mathbf{y}_{n}. Storing \mathbf{y}_{n} as part of \mathbf{F}_{n} is essential for defining propagation functions for multistep methods.

Instead of propagating \mathbf{y}_{n} from one sample time to the next, a multistep propagation function propagates \mathbf{F}_{n} from one sample time to the next. This behavior is defined by Eq. (3.9) and illustrated in Fig. 3.4.

$$
\begin{equation*}
\mathbf{F}_{n+1}=\mathbf{g}\left(t_{n}, \mathbf{F}_{n}\right) \tag{3.9}
\end{equation*}
$$

When defining the multistep propagation functions in Sections 6.3 and 7.4 , it will be necessary to refer to specific columns of \mathbf{F}. Since we are using a subscript to denote the sample number, we will use a superscript in parentheses to denote a specific column.

Figure 3.4: Multistep propagation function.

Convention B: Columns of the F matrix.

The k th column of the \mathbf{F} matrix at sample time n is denoted as

$$
\mathbf{F}_{n}^{(k)}
$$

The submatrix consisting of columns k through l of the \mathbf{F} matrix at sample time n is denoted as

$$
\mathbf{F}_{n}^{(k: \ell)}
$$

3.6 Time Detection Mode

In general, we use IVP solvers in what we refer to as the time detection mode. In these cases, we are given an initial time, t_{0}, and wish to solve the IVP until some final time, t_{f}. The reason we refer to this as the time detection mode is that the algorithm will continue solving the IVP until it detects that it has reached the final time, t_{f}. A block diagram of an IVP solver in the time detection mode is shown in Fig. 3.5.

Figure 3.5: IVP solver block diagram (time detection mode).
Recall from Eq. (3.4) that the IVP solver should produce a time vector $\mathbf{t} \in \mathbb{R}^{N+1}$, where the first element of \mathbf{t} is equal to t_{0}. In this case, for the time detection mode, we also want the last element of \mathbf{t} to be equal to the specified final time, t_{f} (i.e. $t_{N}=t_{f}$). However, we also specify the step size, h (see Section 3.2). This presents an issue because $t_{f}-t_{0}$ may not be an exact multiple of h. If we want to solve the IVP until t_{f}, we need to choose the number of sample times $N+1$ such that the time at the last sample time is greater than or equal to t_{f}. To do this, we simply use the ceiling function (i.e. rounding up).

$$
\begin{equation*}
N=\left\lceil\frac{t_{f}-t_{0}}{h}\right\rceil \tag{3.10}
\end{equation*}
$$

Thus, the last element of \mathbf{t} is

$$
\begin{equation*}
t_{N}=t_{0}+N h \tag{3.11}
\end{equation*}
$$

The issue now is that $t_{N} \neq t_{f}$ (and consequently $\mathbf{y}_{N} \neq \mathbf{y}\left(t_{f}\right)$). To solve this issue, in the last step of an IVP solver algorithm, we can use linear interpolation to estimate $\mathbf{y}_{f}=\mathbf{y}\left(t_{f}\right)$.

$$
\begin{equation*}
\mathbf{y}_{f}=\mathbf{y}_{N-1}+\left[\frac{\mathbf{y}_{N}-\mathbf{y}_{N-1}}{t_{N}-t_{N-1}}\right]\left(t_{f}-t_{N-1}\right) \tag{3.12}
\end{equation*}
$$

Finally, we replace the last row of $[\mathbf{y}]$ with \mathbf{y}_{f}^{T}.

$$
[\mathbf{y}]=\left[\begin{array}{c}
\mathbf{y}_{0}^{T} \\
\mathbf{y}_{1}^{T} \\
\mathbf{y}_{2}^{T} \\
\vdots \\
\mathbf{y}_{N}^{T}
\end{array}\right] \quad \underset{\text { obtained via linear interpolation }}{\text { replacing last row with the } \mathbf{y}_{f}^{T}} \quad[\mathbf{y}]=\left[\begin{array}{c}
\mathbf{y}_{0}^{T} \\
\mathbf{y}_{1}^{T} \\
\mathbf{y}_{2}^{T} \\
\vdots \\
\mathbf{y}_{f}^{T}
\end{array}\right]
$$

For the overall IVP solver algorithm (Algorithm 3 in Section 3.9), we do not directly implement a time detection mode. Rather, we formulate a event function to terminate integration once the final time is reached, in effect casting it into event detection mode (see Section 3.7). This "conversion" is detailed in Section 3.8.

3.6.1 Integrating Backwards in Time

In some cases, the final time, t_{f}, may be less than the initial time, t_{0}. For example, this is the case when solving the continuous-time Riccati differential equation. In these cases, we need to be given the final condition $\mathbf{y}_{f}=\mathbf{y}\left(t_{f}\right)$. However, this is still the same problem as solving an IVP; we are essentially solving the IVP backward in time, and in our IVP solvers, the final condition will be substituted for the initial condition. In practice, our IVP solver (Algorithm 3) checks to see if t_{f} is less than t_{0}, and if so, it switches the sign on the step size, h (i.e. it makes it negative).

$$
h \leftarrow-h
$$

We can then solve and IVP using Algorithm 3 as

$$
[\mathbf{t},[\mathbf{y}]]=\operatorname{solve} _i v p\left(\mathbf{f}, t_{0}, t_{f}, \mathbf{y}_{f}, h\right)
$$

3.7 Event Detection Mode

To motivate the need for an event detection mode, consider a satellite slowly deorbiting due to atmospheric drag. We want to keep solving for its motion until it impacts the Earth. In the time detection mode, we specified a final time until which we wished to keep solving the IVP. However, in this case, we don't know ahead of time when the satellite will impact the Earth. We could make some guesses for t_{f}, but either we underestimate it and the satellite never impacts the Earth before the solver terminates, or we overestimate it and waste time and computational effort calculating motion that (a) we don't need to and (b) doesn't make sense (we would essentially be simulating the trajectory of the satellite as if the Earth isn't there).

In event detection mode, an IVP solver terminates the solver at the occurrence of an event rather than at a certain time. Instead of passing a final time t_{f} to the IVP solver, we pass it an event function $E(t, \mathbf{y})$.

Figure 3.6: IVP solver block diagram (event detection mode).
Based on the time, t, and/or the current value of the state vector, \mathbf{y}, the event function $E(t, \mathbf{y})$ determines whether the solver should continue its solution process or if the solver should be terminated. Therefore, the event function is evaluated at each and every iteration of the IVP solver. Below, we first introduce a more mathematical definition of an event function, to keep in line with our practice thus far of introducing everything from a mathematical standpoint.

The event function is defined in a piecewise manner, where it will evaluate to some value while the IVP solver should continue integrating. However, at some point, the event function will switch to a different value, signaling to the IVP solver that it should be terminated. Specifically, the event function returns 1 while the condition is satisfied, and 0 after it is no longer satisfied.

Convention 4: Mathematical definition of the event function.

An event function $E(t, \mathbf{y})$ (in a mathematical setting) is defined such that it returns 1 until the event (which defines the point at which the solver should be terminated) occurs, after which it will return 0 .

$$
E(t, \mathbf{y})= \begin{cases}1, & \text { event has not } \text { occurred; continue integration } \\ 0, & \text { event has occurred; terminate integration }\end{cases}
$$

Thus, while $E(t, \mathbf{y})=1$, the solver should continue integrating to find the solution.

In a computational setting, we have the event function $E(t, y)$, which returns true if integration should continue and false if it should be terminated.

Convention 5: Computational definition of the event function.

An event function $E(t, y)$ (in a computational setting) is defined such that it returns true until the event (which defines the point at which the solver should be terminated) occurs, after which it will return false.

Thus, while $\mathrm{E}(\mathrm{t}, \mathrm{y})=$ true, the solver should continue integrating to find the solution.

In MATLAB, the integer 1 can be used interchangeably with the logical true. Similarly, the integer 0 can be used interchangeably with the logical false.

Example 3.7.1: Defining an event function.

Implement an event function $E(t, \mathbf{y})$ in MATLAB that can be used to terminate an IVP solver when y_{2} is greater than 300 and y_{5} is negative (these two conditions should be satisfied simultaneously for the solver to terminate).

SOLUTION

We can write the event function in a single line as an anonymous function.

$$
C=@(t, y) \sim((y(2)>300) \& \&(y(5)<0)) ;
$$

ALTERNATE SOLUTION

Alternatively, we can use a MATLAB function with an if/else structure, and then assign a function handle to the MATLAB function. While in this case it is (a) not as efficient and (b) unnecessary to do this, for more complicated event functions this may be necessary.

```
% assign function handle
C = @(t,y) condition(t,y);
% MATLAB functions must be at end of script
```

```
function C = condition(t,y)
    if (y(2) > 300) && (y(5) < 0)
            C = false;
    else
        C = true;
    end
end
```


- ALTERNATE SOLUTION

There exists yet another alternate solution, which is identical to the previous solution, but uses 1 instead of true and 0 instead of false false (since these values are interchangeable in MATLAB).

```
% assign function handle
c = @(t,y) condition(t,y);
% MATLAB functions must be at end of script
function C = condition(t,y)
    if (y(2) > 300) && (y(5) < 0)
        C = 0;
    else
        C = 1;
    end
end
```

Note that in this example, we never used the time variable. However, in some cases we will need to, and by convention, we must still include it in our function definition.

3.8 Converting Time Detection Mode to Event Detection Mode

In the IVP Solver Toolbox, we use a single algorithm (Algorithm 3) to solve IVPs. While we want it to be able to operate in both time detection and event detection modes, to simplify the code, it is useful to "convert" a time detection problem into an event detection problem. Recall that an event function, $E(t, \mathbf{y})$, is a function of time; thus, we can use the event function to check whether the time has reached a certain time. Therefore, we can use an event function to terminate the solution routine once the final time has been reached. This particular event function can be written as

$$
E(t, \mathbf{y})= \begin{cases}1, & t \leq t_{f} \\ 0, & t>t_{f}\end{cases}
$$

In a computational setting, this can be written in a single line as

$$
E(t, y)=(t 0<=t f)
$$

However, we must also account for the case where we are integrating backwards in time. In that case, we have that $t_{f}<t_{0}$. The event function then becomes

$$
E(t, \mathbf{y})= \begin{cases}1, & t \leq t_{f} \text { and } t_{0}<t_{f} \tag{3.13}\\ 0, & t>t_{f} \text { and } t_{0}<t_{f} \\ 1, & t \geq t_{f} \text { and } t_{0}>t_{f} \\ 0, & t<t_{f} \text { and } t_{0}>t_{f}\end{cases}
$$

In a computational setting, this can be written as

```
if tf > t0
    E(t,y) = (t <= tf)
else
    E(t,y) = (t >= tf)
end
```


3.8.1 Premature Termination Due to Numerical Issues

Due to numerical issues, in some cases this method will only solve for the solution up until $t_{f}-h$. For example, let's consider the case where our step size is $h=0.001$ and the final time is $t_{f}=10$. The time vector that we want our solution to have is

$$
\mathbf{t}=\left[\begin{array}{c}
\vdots \\
9.998 \\
9.999 \\
10.000
\end{array}\right]
$$

However, due to numerical errors, the time vector we get might be

$$
\mathbf{t}=\left[\begin{array}{c}
\vdots \\
9.9980000000000000001 \\
9.9990000000000000001
\end{array}\right]
$$

Essentially, we never reach the final time; we refer to this as premature termination. This occurs because when the iteration with $t=9.9990000000000000001$ has finished, the solver will attempt an iteration at $t+h$, which in this case is $t=10.0000000000000000001$. However, for $t=10.0000000000000000001$, the event function will return false, and the desired final iteration will never be executed.

To fix this issue, we can subtract h from the left hand side of the inequalities defining the event function. The side effect of this is in some cases, we will now have two solutions corresponding to essentially the same time. Numerically, they will be different, but ever so slightly (on the order of $10^{-15}-10^{-16}$). In practice, we can set a threshold, and if the difference between the final two times is within that threshold, we know one of the solutions is redundant. We could delete either of these redundant solutions. However, when a final time is specified, we will be interpolating/extrapolating for the solution at that final time, in a manner identical to that discussed in Section 3.6. Therefore, since the last solution in that case will be at the exact final time, we delete the penultimate solution.

Summary

In summary, we update the event function to

```
if tf-h > t0
    E(t,y) = (t-h <= tf)
else
    E(t,y) = (t-h >= tf)
end
```

If the times at the final two iterations are within 10^{-10} of each other, i.e. if

$$
\left|t_{N}-t_{N-1}\right|<10^{-10}
$$

then delete the penultimate element of \mathbf{t} and the penultimate column of $[\mathbf{y}]$ (while $[\mathbf{y}]$ is still in the column form presented in Section 3.2.2).

3.8.2 Integrating Backwards in Time

In event detection mode, we do not specify a final time, so the IVP solver cannot determine on its own if it needs to solve the IVP backwards in time. Nonetheless, we can still solve IVPs backwards in time using Algorithm 3 by manually specifying a negative step size.

$$
[\mathbf{t},[\mathbf{y}]]=\text { solve_ivp }\left(\mathbf{f}, t_{0}, C, \mathbf{y}_{f},-h\right)
$$

3.9 IVP Solver Algorithm

Convention 6: Indexing the time vector and solution matrix.

The nth element of the time vector is denoted

$$
\mathbf{t}_{n}
$$

The subvector corresponding to elements k through ℓ of the time vector is denoted

$$
\mathbf{t}_{k: \ell}
$$

The nth column of the solution matrix is denoted

$$
[\mathbf{y}]_{:, n}
$$

The submatrix corresponding to columns k through ℓ of the solution matrix is denoted

$$
[\mathbf{y}]_{:, k: \ell}
$$

Algorithm 3: solve_ivp

Fixed-step IVP solvers for solving vector-valued initial value problems.

Given:

- $\mathbf{f}(t, \mathbf{y}) \quad-$ multivariate, vector-valued function defining the vector-valued ODE, $d \mathbf{y} / d t=\mathbf{f}(t, \mathbf{y})\left(\mathbf{f}: \mathbb{R} \times \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}\right)$
- $t_{0} \in \mathbb{R} \quad$ - initial time
- $t_{f} \in \mathbb{R}$ or $E(t, \mathbf{y}) \quad$ - final time or event function $\left(E: \mathbb{R} \times \mathbb{R}^{p} \rightarrow \mathbb{B}\right)$
- $\mathbf{y}_{0} \in \mathbb{R}^{p} \quad$ - initial condition
- $h \in \mathbb{R} \quad$ - step size
- method - (OPTIONAL) integration method (one of the methods from Chapters 5-7)

Procedure:

1. Determine if inputs correspond to time detection mode or event detection mode. If the problem is specified as a time detection problem, convert it to an event detection problem.

$$
\text { if } t_{f} \text { is input (time detection mode) }
$$

$$
\begin{aligned}
& \text { (a) Make the step size negative if } t_{0}>t_{f} \text { (integrating backward in } \\
& \text { time). } \\
& \text { (b) Define the event function to convert time detection problem to } \\
& \text { event detection problem. } \\
& \text { if } t_{0}>t_{f} \\
& E(t, \mathbf{y})= \begin{cases}1, & t-h \leq t_{f} \\
0, & t-h>t_{f}\end{cases} \\
& \text { else } \\
& E(t, \mathbf{y})= \begin{cases}1, & t-h \geq t_{f} \\
0, & t-h<t_{f}\end{cases} \\
& \text { end } \\
& \text { (c) Indicate that the final time is known. } \\
& \text { final_time_known = true } \\
& \text { Indicate that the final time is unknown (the problem has been specified } \\
& \text { in event detection mode). }
\end{aligned}
$$

2. Default the integration method to RK4 if it is not input.
```
if (method not input)
    method = 'RK4'
end
```

3. If method specifies a single-step method, define the propagation function as

$$
\mathbf{g}(t, \mathbf{y})=\operatorname{RKX}(\mathbf{f}(t, \mathbf{y}), t, \mathbf{y}, h)
$$

Note that RKX refers to any of the algorithms presented in Section 5.7.
4. If method specifies a multistep predictor method, define the propagation function as

$$
\mathbf{g}(t, \mathbf{F})=\operatorname{ABX}(\mathbf{f}(t, \mathbf{F}), t, \mathbf{y}, h)
$$

Note that ABX refers to any of the algorithms presented in Section 6.3.
5. If method specifies a multistep predictor-corrector method, define the propagation function as

$$
\mathbf{g}(t, \mathbf{F})=\operatorname{ABMX}(\mathbf{f}(t, \mathbf{F}), t, \mathbf{y}, h)
$$

Note that ABMX refers to any of the algorithms presented in Section 7.4.
6. Keep track of whether we are using a single-step or multistep method.

```
if method specifies a single-step method
    single_step = true
else
    single_step = false
end
```

7. If using a multistep method, determine its order, m.
```
if!(single_step)
end
end
```

8. Determine the state dimension (p) given that $\mathbf{y}_{0} \in \mathbb{R}^{p}$.
9. Preallocate the time vector, $\mathbf{t} \in \mathbb{R}^{10000}$, and the solution matrix, $\mathbf{Y} \in \mathbb{R}^{10000 \times p}$.

$$
\begin{aligned}
& \mathbf{t}=\mathbf{0}_{10000 \times 1} \\
& {[\mathbf{y}]=\mathbf{0}_{p \times 10000}}
\end{aligned}
$$

10. Store the initial conditions in \mathbf{t} and $[\mathbf{y}]$.

$$
\begin{aligned}
& \mathbf{t}_{1}=t_{0} \\
& {[\mathbf{y}]_{1: p, 1}=\mathbf{y}_{0}}
\end{aligned}
$$

11. Solve the IVP.
```
if single_step
    n=1
    while C(\mp@subsup{\mathbf{t}}{n}{},[\mathbf{y}\mp@subsup{]}{;,n}{})
\[
[\mathbf{y}]_{:, n+1}=\mathbf{g}\left(\mathbf{t}_{n},[\mathbf{y}]_{:, n}\right)
\]
(c) Increment time and loop index.
\[
\begin{aligned}
& \mathbf{t}_{n+1}=\mathbf{t}_{n}+h \\
& n=n+1
\end{aligned}
\]
    end
else
```

 (a) Expand \(\mathbf{t}\) and \([\mathbf{y}]\) if needed (Algorithm 4).
 if \(\begin{aligned} & n+1)>\text { length }(\mathbf{t}) \\ & {[\mathbf{t},[\mathbf{y}]]=} \\ & \text { expand_ivp_arrays }(\mathbf{t},[\mathbf{y}])\end{aligned}\)
 end
(b) Propagate state vector to next sample time.
(a) Populate the first $m+1$ elements of the time vector.

$$
\mathbf{t}_{1:(m+1)}=\left[\begin{array}{c}
t_{0} \\
t_{0}+h \\
t_{0}+2 h \\
\vdots \\
t_{0}+(m-1) h \\
t_{0}+m h
\end{array}\right]
$$

(b) Propagate state vector using RK4 (Algorithm 20) for first m sample times.

$$
\begin{aligned}
& \text { for } n=1 \text { to } m \\
& \quad[\mathbf{y}]_{:, n+1}=\operatorname{RK} 4\left(\mathbf{f}, \mathbf{t}_{n},[\mathbf{y}]_{:, n}, h\right)
\end{aligned}
$$

(c) Initialize the \mathbf{F} matrix (stores function evaluations for first m sample times in first m columns, state vector at $(m+1)$ th sample time in $(m+1)$ th column $)$.

$$
\mathbf{F}_{n}=\left[\mathbf{f}\left(t_{1},[\mathbf{y}]_{:, 1}\right)|\cdots| \mathbf{f}\left(t_{m},[\mathbf{y}]_{;, m}\right) \mid[\mathbf{y}]_{:, m+1}\right]
$$

(d) State vector propagation while condition is satisfied.

$$
n=m+1
$$

$$
\text { while } C\left(\mathbf{t}_{n},[\mathbf{y}]_{:, n}\right)
$$

i. Expand \mathbf{t} and $[\mathbf{y}]$ if needed (Algorithm 4).

$$
\begin{aligned}
& \text { if }(n+1)>\text { length }(\mathbf{t}) \\
& \quad \begin{aligned}
& {[\mathbf{t},[\mathbf{y}]]=} \\
& \text { expand_ivp_arrays }(\mathbf{t},[\mathbf{y}])
\end{aligned}
\end{aligned}
$$

ii. Updates \mathbf{F} matrix (propagates to next sample time).

$$
\mathbf{F}=\mathbf{g}\left(\mathbf{t}_{n}, \mathbf{F}\right)
$$

iii. Extract the state vector at the next sample time and store it in the solution matrix.

$$
[\mathbf{y}]_{:, n+1}=\mathbf{F}^{(m+1)}
$$

iv. Increment time and loop index.

$$
\begin{aligned}
& \mathbf{t}_{n+1}=\mathbf{t}_{n}+h \\
& n=n+1
\end{aligned}
$$

end

end

12. Trim arrays.

$$
\begin{aligned}
& {[\mathbf{y}]=[\mathbf{y}]_{:, 1: n}} \\
& \mathbf{t}=\mathbf{t}_{1: n}
\end{aligned}
$$

13. Determine the number of subintervals (N) given that $\mathbf{t} \in \mathbb{R}^{N+1}$.
14. Linearly interpolate to find solution at desired final time (if known).
```
if final_time_known
```

(a) Linearly interpolate to find the solution at t_{f}.

$$
[\mathbf{y}]_{:, N+1}=[\mathbf{y}]_{N}+\left[\frac{[\mathbf{y}]_{N+1}-[\mathbf{y}]_{N}}{\mathbf{t}_{N+1}-\mathbf{t}_{N}}\right]\left(t_{f}-\mathbf{t}_{N}\right)
$$

(b) Replace last element of \mathbf{t} with t_{f}.

$$
\mathbf{t}_{N+1}=t_{f}
$$

end
15. Delete the penultimate solution if it corresponds to (almost exactly) the same time as the last solution.

$$
\text { if }\left|\mathbf{t}_{N+1}-\mathbf{t}_{N}\right|<10^{-10}
$$

Delete the penultimate element of \mathbf{t} and the penultimate column of [y].
end
16. Transpose solution matrix so it is returned in "standard form".

$$
[\mathbf{y}]=[\mathbf{y}]^{T}
$$

Return:

- $\mathbf{t} \in \mathbb{R}^{N+1} \quad$ - time vector
- $[\mathbf{y}] \in \mathbb{R}^{(N+1) \times p} \quad$ - solution matrix

Note:

- The nth row of $[\mathbf{y}]$ stores the transpose of the state vector (i.e. the solution) corresponding to the nth time in \mathbf{t}. This convention is chosen to match the convention used by MATLAB's ODE suite.

3.9.1 Starting Multistep Solvers

Recall the definition of the \mathbf{F} matrix (repeated below) from Eq. (3.8) in Section 3.5.2.

$$
\mathbf{F}_{n}=\left[\begin{array}{l|l|l|l|l|}
\mathbf{f}\left(t_{n}, \mathbf{y}_{n}\right)\left|\mathbf{f}\left(t_{n-1}, \mathbf{y}_{n-1}\right)\right| \mathbf{f}\left(t_{n-2}, \mathbf{y}_{n-2}\right) & \left.\cdots\left|\mathbf{f}\left(t_{n-m+1}, \mathbf{y}_{n-m+1}\right)\right| \mathbf{y}_{n}\right]
\end{array}\right]
$$

From the definition of \mathbf{F}, we can immediately notice that we need the solutions at m sample times to populate \mathbf{F}. Therefore, we need to use a single-step solver for the first m iterations of a multistep solver (i.e. multistep methods
are not self-starting) [6, pp. 133-134]. In Algorithm 3 (which is implemented in the IVP Solver Toolbox), the RK4 integrator (see Algorithm 20) is used for the first m iterations.

3.9.2 Expanding Solution Arrays

The general IVP solver outlined in Algorithm 3 operates in event detection mode, which means it does not know ahead of time how big the time vector and solution matrix need to be. By default, the arrays to store these quantities are initialized so that they can store results for 10,000 sample times. However, sometimes we will need to increase the size of these arrays. This is done by initializing new arrays that have twice the size of the previous arrays, and copying the results from the old arrays into the new arrays. This procedure is formalized in Algorithm 4.

Algorithm 4: expand_ivp_arrays

Expands the arrays storing the IVP solution.

Given:

- $\mathbf{t} \in \mathbb{R}^{N+1} \quad$ - time vector
- $[\mathbf{y}] \in \mathbb{R}^{p \times(N+1)} \quad$ - solution matrix

Procedure:

1. Determine the number of subintervals, given that $\mathbf{t} \in \mathbb{R}^{N+1}$.
2. Determine the state dimension, given that $[\mathbf{y}] \in \mathbb{R}^{p \times(N+1)}$.
3. Expand the time vector.

$$
\mathbf{t}_{\mathrm{new}}=\left[\begin{array}{c}
\mathbf{t} \\
\mathbf{0}_{N+1}
\end{array}\right]
$$

4. Expand the solution matrix.

$$
[\mathbf{y}]_{\text {new }}=\left[\begin{array}{ll}
{[\mathbf{y}]} & \mathbf{0}_{p \times(N+1)}
\end{array}\right]
$$

Return:

- $\mathbf{t}_{\text {new }} \in \mathbb{R}^{2(N+1)} \quad$ - expanded time vector
- $[\mathbf{y}]_{\text {new }} \in \mathbb{R}^{p \times 2(N+1)} \quad$ - expanded solution matrix

3.9.3 O- vs. 1-Based Indexing

The time vector, \mathbf{t}, is defined using 0 -based indexing (i.e. its first element has index 0 and stores t_{0}). Similarly, the solution matrix, $[\mathbf{y}]$, is also defined using 0 -based indexing (i.e. its first row has index 0 and stores \mathbf{y}_{0}^{T}).

However, MATLAB uses 1-based indexing. Thus, Algorithm 3 is written using 1-based indexing, which can get a little confusing; for example, element \mathbf{t}_{5} of the time vector, \mathbf{t}, stores time t_{4}.

Matrix-Valved Initial Valve Problems

4.1 Definition

Until now, we have considered vector-valued ODEs of the form

$$
\frac{d \mathbf{y}}{d t}=\mathbf{f}(t, \mathbf{y})
$$

where $\mathbf{y} \in \mathbb{R}^{p}$ is a vector and where $\mathbf{f}: \mathbb{R} \times \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}$. However, differential equations of the form

$$
\frac{d \mathbf{M}}{d t}=\mathbf{F}(t, \mathbf{M})
$$

are also common, where $\mathbf{M} \in \mathbb{R}^{p \times r}$ is a matrix and where $\mathbf{F}: \mathbb{R} \times \mathbb{R}^{p \times r} \rightarrow \mathbb{R}^{p \times r}$ is a matrix-valued ODE.
For vector-valued ODEs, we referred to \mathbf{y} as the state vector. In the context of matrix-valued ODEs, we refer to \mathbf{M} as the state matrix ${ }^{1}$.

4.2 Transforming a Matrix-Valued IVP into a Vector-Valued IVP

Consider writing the matrix $\mathbf{M} \in \mathbb{R}^{p \times r}$ in terms of its column vectors:

$$
\mathbf{M}=\left[\begin{array}{ccc}
\mid & & \mid \tag{4.1}\\
\mathbf{m}_{1} & \cdots & \mathbf{m}_{r} \\
\mid & & \mid
\end{array}\right]
$$

We know that

$$
\frac{d \mathbf{M}}{d t}=\mathbf{F}(t, \mathbf{M})
$$

$$
\left[\begin{array}{ccc}
\mid & & \mid \\
\frac{d \mathbf{m}_{1}}{d t} & \cdots & \frac{d \mathbf{m}_{r}}{d t} \\
\mid & & \mid
\end{array}\right]=\mathbf{F}\left(t,\left[\begin{array}{ccc}
\mid & & \mid \\
\mathbf{m}_{1} & \cdots & \mathbf{m}_{r} \\
\mid & & \mid
\end{array}\right]\right)
$$

[^3]where $\mathbf{F}: \mathbb{R} \times \mathbb{R}^{p \times r} \rightarrow \mathbb{R}^{p \times r}$.
Our goal is to write the matrix-valued ODE, F, as a vector-valued ODE, \mathbf{f}, where
$$
\frac{d \mathbf{y}}{d t}=\mathbf{f}(t, \mathbf{y})
$$

Let's imagine stacking all the column vectors of \mathbf{M} on top of each other. Then our goal becomes to write a function of the form

$$
\left[\begin{array}{c}
d \mathbf{m}_{1} / d t \tag{4.2}\\
\vdots \\
d \mathbf{m}_{r} / d t
\end{array}\right]=\mathbf{f}\left(t,\left[\begin{array}{c}
\mathbf{m}_{1} \\
\vdots \\
\mathbf{m}_{r}
\end{array}\right]\right)
$$

Since the matrix \mathbf{M} has $p r$ entries, stacking all the column vectors of \mathbf{M} on top of one another will produce a vector of length $p r$. Thus, we have $\mathbf{f}: \mathbb{R} \times \mathbb{R}^{p r} \rightarrow \mathbb{R}^{p r}$.

In an IVP solver setting, our vector-valued function \mathbf{f} should have the inputs t and $\mathbf{y} \in \mathbb{R}^{p r}$, where

$$
\mathbf{y}=\left[\begin{array}{c}
\mathbf{m}_{1} \tag{4.3}\\
\vdots \\
\mathbf{m}_{r}
\end{array}\right]
$$

It follows that essentially, given $\mathbf{y} \in \mathbb{R}^{p r}$, we construct $\mathbf{M} \in \mathbb{R}^{p \times r}$, evaluate the matrix-valued ODE \mathbf{F} to find $d \mathbf{M} / d t \in \mathbb{R}^{p \times r}$, and then construct $d \mathbf{y} / d t \in \mathbb{R}^{p r}$ from $d \mathbf{M} / d t$. We formalize this procedure for defining a vectorvalued ODE $\mathbf{f}(t, \mathbf{y})$ in terms of a matrix-valued $\operatorname{ODE} \mathbf{F}(t, \mathbf{M})$ as Algorithm 6. Note that Algorithm 6 relies on a "helper" algorithm, Algorithm 5.

Algorithm 5: state_vector_derivative

Finds the state vector derivative given a matrix-valued ODE.

Given:

- $\mathbf{F}(t, \mathbf{M})$ - multivariate, matrix-valued function defining the matrix-valued

$$
\mathrm{ODE}, d \mathbf{M} / d t=\mathbf{F}(t, \mathbf{M})\left(\mathbf{F}: \mathbb{R} \times \mathbb{R}^{p \times r} \rightarrow \mathbb{R}^{p \times r}\right)
$$

- $t \in \mathbb{R} \quad$ - current time
- $\mathbf{y} \in \mathbb{R}^{p r} \quad$ - current state vector, where \mathbf{y} is a vector formed by stacking the column vectors of \mathbf{M} on top of one another
- $p \in \mathbb{R} \quad$ - number of rows of \mathbf{M}

Procedure:

1. Determine the product $p r$, given that $\mathbf{y} \in \mathbb{R}^{p r}$.
2. Determine r.

$$
r=\frac{p r}{p}
$$

3. Obtain $\mathbf{M} \in \mathbb{R}^{p \times r}$ from $\mathbf{y} \in \mathbb{R}^{p r}$.

$$
\mathbf{y}=\left[\begin{array}{c}
\mathbf{m}_{1} \\
\vdots \\
\mathbf{m}_{r}
\end{array}\right] \quad \rightarrow \quad \mathbf{M}=\left[\begin{array}{ccc}
\mid & & \mid \\
\mathbf{m}_{1} & \cdots & \mathbf{m}_{r} \\
\mid & & \mid
\end{array}\right]
$$

This can be done in MATLAB using the reshape function:

$$
\mathbf{M}=\operatorname{reshape}(\mathbf{y},[p, r])
$$

4. Evaluate the matrix-valued ODE.

$$
\frac{d \mathbf{M}}{d t}=\mathbf{F}(t, \mathbf{M})
$$

5. Obtain $d \mathbf{y} / d t \in \mathbb{R}^{p r}$ from $d \mathbf{M} / d t \in \mathbb{R}^{p \times r}$.

$$
\frac{d \mathbf{M}}{d t}=\left[\begin{array}{ccc}
\mid & & \mid \\
\frac{d \mathbf{m}_{1}}{d t} & \cdots & \frac{d \mathbf{m}_{r}}{d t} \\
\mid & & \mid
\end{array}\right] \quad \rightarrow \quad \frac{d \mathbf{y}}{d t}=\left[\begin{array}{c}
d \mathbf{m}_{1} / d t \\
\vdots \\
d \mathbf{m}_{r} / d t
\end{array}\right]
$$

This can be done in MATLAB as

$$
\frac{d \mathbf{y}}{d t}=\frac{d \mathbf{M}}{d t}(:)
$$

Return:

- $\frac{d \mathbf{y}}{d t} \in \mathbb{R}^{p r} \quad$ - state vector derivative

Algorithm 6: mat2vec_ODE

Transforms a matrix-valued ODE into a vector-valued ODE.

Given:

- $\mathbf{F}(t, \mathbf{M})$ - multivariate, matrix-valued function defining the matrix-valued ODE, $d \mathbf{M} / d t=\mathbf{F}(t, \mathbf{M})\left(\mathbf{F}: \mathbb{R} \times \mathbb{R}^{p \times r} \rightarrow \mathbb{R}^{p \times r}\right)$
- $p \in \mathbb{R} \quad$ - number of rows of \mathbf{M}

Procedure:

Create a function defining the corresponding vector-valued ODE utilizing Algorithm 5.
$\mathbf{f}(t, \mathbf{y})=$ state_vector_derivative $(\mathbf{F}, t, \mathbf{y}, p)$

Return:

- $\mathbf{f}(t, \mathbf{y})$ - multivariate, vector-valued function defining the corresponding vector-valued ODE, $d \mathbf{y} / d t=\mathbf{f}(t, \mathbf{y})\left(\mathbf{f}: \mathbb{R} \times \mathbb{R}^{p r} \rightarrow \mathbb{R}^{p r}\right)$

Similarly, given an IVP involving a matrix-valued ODE, the associated initial condition will also be a matrix:

$$
\mathbf{M}\left(t_{0}\right)=\mathbf{M}_{0} \in \mathbb{R}^{p \times r}
$$

Algorithm 6 essentially defines $\mathbf{f}(t, \mathbf{y})$ as a calculation procedure. To obtain the associated vector initial condition \mathbf{y}_{0} for use in an IVP solver, we can simply note that

$$
\mathbf{M}_{0}=\left[\begin{array}{ccc}
\mid & & \mid \\
\mathbf{m}_{1,0} & \cdots & \mathbf{m}_{r, 0} \\
\mid & & \mid
\end{array}\right] \quad \rightarrow \quad \mathbf{y}_{0}=\left[\begin{array}{c}
\mathbf{m}_{1,0} \\
\vdots \\
\mathbf{m}_{r, 0}
\end{array}\right]
$$

Defining this step as Algorithm 7,

Algorithm 7: mat2vec_IC

Transforms the initial condition for a matrix-valued IVP into the initial condition for its corresponding vector-valued IVP.

Given:

- $\mathrm{M}_{0} \in \mathbb{R}^{p \times r} \quad$ - initial condition for matrix-valued IVP

Procedure:

Obtain $\mathbf{y}_{0} \in \mathbb{R}^{p r}$ from $\mathbf{M} \in \mathbb{R}^{p \times r}$.

$$
\mathbf{M}_{0}=\left[\begin{array}{ccc}
\mid & & \mid \\
\mathbf{m}_{1,0} & \cdots & \mathbf{m}_{r, 0} \\
\mid & & \mid
\end{array}\right] \quad \rightarrow \quad \mathbf{y}_{0}=\left[\begin{array}{c}
\mathbf{m}_{1,0} \\
\vdots \\
\mathbf{m}_{r, 0}
\end{array}\right]
$$

This can be done in MATLAB as

$$
\mathbf{y}_{0}=\mathrm{M}_{0}(:)
$$

Return:

- $\mathbf{y}_{0} \in \mathbb{R}^{p r} \quad$ - initial condition for corresponding vector-valued IVP

Finally, if we are solving the IVP in event detection mode, then we will have a event function ${ }^{2} E(t, \mathbf{M})$ (where $E: \mathbb{R} \times \mathbb{R}^{p \times r} \rightarrow \mathbb{B}$) that we must also transform to be compatible with the corresponding vector-valued IVP. This can be done in an almost identical way to how we transformed $\mathbf{F}(t, \mathbf{M})$ to $\mathbf{f}(t, \mathbf{y})$; see Algorithm 9 below. Note that Algorithm 9 also depends on a helper algorithm, Algorithm 8.

Algorithm 8: vector_event_function

Evaluates the event function for a matrix-valued IVP given the current time and corresponding state vector.

Given:

- $C_{m}(t, \mathbf{M}) \quad$ - event function for matrix-valued $\operatorname{IVP}\left(C_{m}: \mathbb{R} \times \mathbb{R}^{p \times r} \rightarrow \mathbb{B}\right)$
- $t \in \mathbb{R} \quad$ - current time
- $\mathbf{y} \in \mathbb{R}^{p r} \quad$ - current state vector, where \mathbf{y} is a vector formed by stacking the column vectors of \mathbf{M} on top of one another
- $p \in \mathbb{R} \quad$ - number of rows of \mathbf{M}

Procedure:

1. Determine the product $p r$, given that $\mathbf{y} \in \mathbb{R}^{p r}$.
2. Determine r.

$$
r=\frac{p r}{p}
$$

[^4]3. Obtain $\mathbf{M} \in \mathbb{R}^{p \times r}$ from $\mathbf{y} \in \mathbb{R}^{p r}$.
\[

\mathbf{y}=\left[$$
\begin{array}{c}
\mathbf{m}_{1} \\
\vdots \\
\mathbf{m}_{r}
\end{array}
$$\right] \quad \rightarrow \quad \mathbf{M}=\left[$$
\begin{array}{ccc}
\mid & & \mid \\
\mathbf{m}_{1} & \cdots & \mathbf{m}_{r} \\
\mid & & \mid
\end{array}
$$\right]
\]

This can be done in MATLAB using the reshape function:

$$
\mathbf{M}=\operatorname{reshape}(\mathbf{y},[p, r])
$$

4. Evaluate the event function.

$$
C=C_{m}(t, \mathbf{M})
$$

Return:

- $C \in \mathbb{B}$ - evaluation of event function

Algorithm 9: mat2vec_E

Transforms the event function for a matrix-valued IVP into the event function for its corresponding vector-valued IVP.

Given:

- $C_{m}(t, \mathbf{M}) \quad$ - event function for matrix-valued IVP $\left(C_{m}: \mathbb{R} \times \mathbb{R}^{p \times r} \rightarrow \mathbb{B}\right)$
- $p \in \mathbb{R} \quad$ - number of rows of \mathbf{M}

Procedure:

Create a function defining the event function for the corresponding vector-valued IVP using Algorithm 8.

$$
C_{v}(t, \mathbf{y})=\text { vector_event_function }\left(C_{m}, t, \mathbf{y}, p\right)
$$

Return:

- $C_{v}(t, \mathbf{y}) \quad$ - event function $\left(C_{v}: \mathbb{R} \times \mathbb{R}^{p r} \rightarrow \mathbb{R}^{p r}\right)$ for corresponding vector-valued IVP

4.3 Obtaining the Matrix Results

mat 2 vec _ODE and mat 2 vec _IC (Algorithms 6 and 7, respectively) from the previous section essentially help us define the IVP

$$
\frac{d \mathbf{y}}{d t}=\mathbf{f}(t, \mathbf{y}), \quad \mathbf{y}\left(t_{0}\right)=\mathbf{y}_{0}
$$

Running an IVP solver on this IVP will give us the solution matrix $[\mathbf{y}] \in \mathbb{R}^{(N+1) \times p r}$. The nth row of $[\mathbf{y}]$ stores \mathbf{y}_{n}^{T}, where $\mathbf{y}_{n}=\mathbf{y}\left(t_{n}\right) \in \mathbb{R}^{p r}$ is the solution of the IVP at time t_{n}. We want the solution array $[\mathbf{M}] \in \mathbb{R}^{p \times r \times(N+1)}$, where
the nth page ${ }^{3}$ of $[\mathbf{M}]$ stores the solution, $\mathbf{M}\left(t_{n}\right)$, at time t_{n} to the IVP

$$
\frac{d \mathbf{M}}{d t}=\mathbf{F}(t, \mathbf{M}), \quad \mathbf{M}\left(t_{0}\right)=\mathbf{M}_{0}
$$

To obtain $[\mathbf{M}]$, we can use Algorithm 10.

Algorithm 10: vec2mat_sol

Transforms the solution matrix for a vector-valued IVP into the solution array for the corresponding matrix-valued IVP.

Given:

- $[\mathbf{y}] \in \mathbb{R}^{(N+1) \times p r} \quad$ - solution matrix (the nth row of $[\mathbf{y}]$ stores \mathbf{y}_{n}^{T}, where $\mathbf{y}_{n} \in \mathbb{R}^{p r}$ is the solution at $t=t_{n}$)
- $p \in \mathbb{R} \quad$ - number of rows of \mathbf{M}

Procedure:

1. Determine the product $p r$ and the scalar N, given that $[\mathbf{y}] \in \mathbb{R}^{(N+1) \times p r}$.
2. Determine r.

$$
r=\frac{p r}{p}
$$

3. Preallocate the solution array $[\mathbf{M}] \in \mathbb{R}^{p \times r \times(N+1)}$.

$$
[\mathbf{M}]=\mathbf{0}_{p \times r \times(N+1)}
$$

4. Populate the solution array.
```
for \(n=1\) to \(N+1\)
    \(([\mathbf{M}])_{1: p, 1: r, n}=\operatorname{reshape}\left([\mathbf{y}]_{n, 1: p r},[p, q]\right)\)
```


Return:

- $[\mathbf{M}] \in \mathbb{R}^{p \times r \times(N+1)} \quad$ - solution array (nth page of $[\mathbf{M}]$ stores the solution, $\mathbf{M}\left(t_{n}\right)=\mathbf{M}_{n}$, at time $\left.t_{n}\right)$

Note:

- $\mathbf{M} \in \mathbb{R}^{p \times r}$
- $\mathbf{y} \in \mathbb{R}^{p r}$
- $\mathbf{t} \in \mathbb{R}^{N+1}$
- The nth page of $[\mathbf{M}]$ stores the state matrix (i.e. the solution) corresponding to the nth time in \mathbf{t}.

[^5]
4.4 One-Step Propagation for Matrix-Valued ODEs

Recall (from Section 3.5.1) that the single-step methods (algorithms are summarized in Section 5.7) are ideally suited for use in "one-step propagation". The documentation of the IVP Solver Toolbox functions corresponding to these algorithms is written specifically for the case of vector-valued ODEs. However, the exact same functions can be used for matrix-valued ODEs, since the functions make no assumptions regarding the dimensions of the inputs.

4.5 IVP Solver Algorithm for Matrix-Valued IVPs

To solve a matrix-valued IVP, we can first transform to a vector-valued IVP using Algorithms 6 and 7 from Section 4.2 , solving the corresponding vector-valued IVP using Algorithm 3 from Section 3.9, and finally transforming the solution back to a matrix-valued form using Algorithm 10 from Section 4.3. This general procedure is formalized as Algorithm 11 below.

Algorithm 11: solve_ivp_matrix

Fixed-step IVP solvers for solving matrix-valued initial value problems

Given:

- $\mathbf{F}(t, \mathbf{M}) \quad-$ multivariate, matrix-valued function defining the matrix-valued ODE, $d \mathbf{M} / d t=\mathbf{F}(t, \mathbf{M})$ $\left(\mathbf{F}: \mathbb{R} \times \mathbb{R}^{p \times r} \rightarrow \mathbb{R}^{p \times r}\right)$
- $t_{0} \in \mathbb{R}$
- initial time
- $t_{f} \in \mathbb{R}$ or $E(t, \mathbf{M}) \quad$ - final time or event function $\left(E: \mathbb{R} \times \mathbb{R}^{p \times r} \rightarrow \mathbb{B}\right)$
$\cdot \mathrm{M}_{0} \in \mathbb{R}^{p \times r} \quad$ - initial condition
- $h \in \mathbb{R} \quad$ - step size
- method - (OPTIONAL) integration method (one of the methods from Chapters 5-7)

Procedure:

1. Determine p given that $\mathbf{M}_{0} \in \mathbb{R}^{p \times r}$.
2. Convert the matrix-valued ODE to a vector-valued ODE (Algorithm 6).

$$
\mathbf{f}=\text { mat } 2 \mathrm{vec} _\mathrm{ODE}(\mathbf{F}, p)
$$

3. Convert the initial condition for the matrix-valued IVP into the initial condition for the corresponding matrix-valued IVP (Algorithm 7).

$$
\mathbf{y}_{0}=\text { mat2vec_IC }\left(\mathbf{M}_{0}\right)
$$

4. Convert the event function for the matrix-valued IVP into the event function for its corresponding vector-valued IVP (Algorithm 9).

$$
\begin{aligned}
& \text { if (event function given) } \\
& \left.\right|_{\text {end }} C=\text { mat2vec_ }(C, p) .
\end{aligned}
$$

5. Solve the corresponding vector-valued IVP (Algorithm 3).

$$
[t,[\mathbf{y}]]=\operatorname{solve} \operatorname{ivp}\left(\mathbf{f}, t_{0}, t_{f} \text { or } C, \mathbf{y}_{0}, h, \text { method }\right)
$$

6. Transform the solution matrix for the vector-valued IVP into the solution array for the matrix-valued IVP (Algorithm 10).

$$
[\mathbf{M}]=\text { vec2mat_sol }([\mathbf{y}], p)
$$

Return:

- $\mathbf{t} \in \mathbb{R}^{N+1} \quad$ - time vector
- $[\mathbf{M}] \in \mathbb{R}^{(N+1) \times p} \quad$ - solution array

Note:

- If p is not input, it is assumed that the state matrix (\mathbf{M}) is a square matrix.
- The nth page of $[\mathbf{M}]$ stores the state matrix (i.e. the solution) corresponding to the nth time in t.

Explicit Runga-Kutta (Single-Step) Methods

5.1 General Form of the Explicit Runge-Kutta Method

In general, an s-stage Runge-Kutta method is defined as

$$
\begin{equation*}
\mathbf{y}_{n+1}=\mathbf{y}_{n}+h \sum_{i=1}^{s} b_{i} \mathbf{k}_{i} \tag{5.1}
\end{equation*}
$$

For explicit Runge-Kutta methods,

$$
\begin{align*}
\mathbf{k}_{1} & =\mathbf{f}\left(t_{n}, \mathbf{y}_{i}\right) \tag{5.2}\\
\mathbf{k}_{2} & =\mathbf{f}\left(t_{n}+c_{2} h, \mathbf{y}_{i}+h\left(a_{21} \mathbf{k}_{1}\right)\right) \\
\mathbf{k}_{3} & =\mathbf{f}\left(t_{n}+c_{3} h, \mathbf{y}_{i}+h\left(a_{31} \mathbf{k}_{1}+a_{32} \mathbf{k}_{2}\right)\right) \\
& \vdots \\
\mathbf{k}_{i} & =\mathbf{f}\left(t_{n}+c_{i} h, \mathbf{y}_{n}+h \sum_{j=1}^{i-1} a_{i j} \mathbf{k}_{j}\right) \\
& \vdots \\
\mathbf{k}_{s} & =\mathbf{f}\left(t_{n}+c_{s} h, \mathbf{y}_{n}+h \sum_{j=1}^{s-1} a_{i j} \mathbf{k}_{j}\right)
\end{align*}
$$

The order, m, of a Runge-Kutta method is not necessarily equal to the number of stages.

$$
p \neq s \quad \text { (in general) }
$$

However, for the explicit Runge-Kutta methods summarized in this document, we will in fact have that

$$
p=s \quad \text { (for the RK methods summarized in this document) }
$$

Note that

$$
\begin{aligned}
\mathbf{y}_{n}, \mathbf{y}_{n+1}, \mathbf{k}_{i} & \in \mathbb{R}^{p} \\
h, a_{i j}, b_{i}, c_{i} & \in \mathbb{R}
\end{aligned}
$$

For a given method, the coefficients $a_{i j}, b_{i}$, and c_{i} are often defined using a Butcher tableau:

We refer to Eq. (5.1) as the propagation equation, since it propagates the state vector \mathbf{y} from one sample time to the next (i.e. from time t_{n} to time t_{n+1}). The tableau2eqns ${ }^{1}$ function in the IVP Solver Toolbox can be used to generate the propagation equation, as well as all the \mathbf{k} vector coefficients. The input to this function is a matrix $\mathbf{T} \in \mathbb{R}^{(s+1) \times(s+1)}$ storing the Butcher tableau.

$$
\mathbf{T}=\left[\begin{array}{c|ccccc}
0 & 0 & 0 & 0 & \cdots & 0 \\
c_{2} & a_{21} & 0 & 0 & \cdots & 0 \\
c_{3} & a_{31} & a_{32} & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\
c_{s} & a_{s 1} & a_{s 2} & \cdots & a_{s, s-1} & 0 \\
\hline 0 & b_{1} & b_{2} & \cdots & b_{s-1} & b_{s}
\end{array}\right]
$$

tableau2eqns first extracts the Runge-Kutta matrix $\mathbf{A} \in \mathbb{R}^{s \times s}$, the weight vector $\mathbf{b} \in \mathbb{R}^{1 \times s}$, and the node vector $\mathbf{c} \in \mathbb{R}^{s}[5,9]$.

$$
\begin{gathered}
\mathbf{A}=\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 s} \\
\vdots & \ddots & \vdots \\
a_{s 1} & \cdots & a_{s s}
\end{array}\right]=\left[\begin{array}{ccccc}
0 & 0 & 0 & \cdots & 0 \\
a_{21} & 0 & 0 & \cdots & 0 \\
a_{31} & a_{32} & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
a_{s 1} & a_{s 2} & \cdots & a_{s, s-1} & 0
\end{array}\right] \\
\mathbf{b}=\left[\begin{array}{ccc}
b_{1} & \cdots & b_{s}
\end{array}\right] \\
\mathbf{c}=\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{s}
\end{array}\right]=\left[\begin{array}{c}
0 \\
c_{2} \\
\vdots \\
c_{s}
\end{array}\right]
\end{gathered}
$$

A list of the Butcher tableaus used to generate the equations in Sections 5.2-5.5 can be found in Section 5.6.

5.2 Euler Method

Consider the initial value problem

$$
\frac{d \mathbf{y}}{d t}=\mathbf{f}(t, \mathbf{y}), \quad \mathbf{y}\left(t_{0}\right)=\mathbf{y}_{0}
$$

[^6]Recall from Eq. (3.1) that the solution of this IVP is

$$
\mathbf{y}(t)=\mathbf{y}_{0}+\int_{t_{0}}^{t} \mathbf{f}(t, \mathbf{y}) d t
$$

As discussed in Section 3.2, in general, it is either very difficult or mathematical impossible to evaluate the integral above in closed form. However, note that we can pick any point in time to be point t_{0}. Therefore, given $\mathbf{y}_{n}=\mathbf{y}\left(t_{n}\right)$ at sample time t_{n}, we can find $\mathbf{y}_{n+1}=\mathbf{y}\left(t_{n+1}\right)$ at the next sample time as

$$
\mathbf{y}_{n+1}=\mathbf{y}_{n}+\int_{t_{n}}^{t_{n_{1}}} \mathbf{f}\left(t_{n}, \mathbf{y}\right) d t
$$

The function \mathbf{f} has some value $\mathbf{f}\left(t_{n}, \mathbf{y}_{n}\right)$ at time t_{n}. To define the Euler method (RK1_euler), let's assume that \mathbf{f} maintains this value until the next sample time, t_{n+1} [2].

$$
\mathbf{f}(t, \mathbf{y}) \approx \mathbf{f}\left(t_{n}, \mathbf{y}_{n}\right) \forall t \in\left[t_{n}, t_{n+1}\right)
$$

Since $\mathbf{f}\left(t_{n}, \mathbf{y}_{n}\right)$ is now treated as a constant over the time interval $\left[t_{n}, t_{n+1}\right)$, we can pull it out from under the integrand.

$$
\begin{gather*}
\mathbf{y}_{n+1}=\mathbf{y}_{n}+\mathbf{f}\left(t, \mathbf{y}_{n}\right) \int_{t_{n}}^{t_{n+1}} d t=\mathbf{y}_{n}+\mathbf{f}\left(t_{n}, \mathbf{y}_{n}\right)(\underbrace{t_{n+1}-t_{n}}_{h}) \\
\mathbf{y}_{n+1}=\mathbf{y}_{n}+h \mathbf{f}\left(t_{n}, y_{n}\right) \tag{5.3}
\end{gather*}
$$

5.3 Runge-Kutta Second-Order Methods

Method	Abbreviation	Equations	Reference(s)
Midpoint Method	RK2	$\begin{aligned} & \mathbf{k}_{1}=\mathbf{f}\left(t_{n}, \mathbf{y}_{n}\right) \\ & \mathbf{k}_{2}=\mathbf{f}\left(t_{n}+\frac{h}{2}, y_{n}+\frac{h \mathbf{k}_{1}}{2}\right) \\ & \mathbf{y}_{n+1}=\mathbf{y}_{n}+h \mathbf{k}_{2} \end{aligned}$	[5, 9]
$\begin{aligned} & \text { Heun's } \\ & \text { Second-Order } \\ & \text { Method } \end{aligned}$	RK2_heun	$\begin{aligned} & \mathbf{k}_{1}=\mathbf{f}\left(t_{n}, \mathbf{y}_{n}\right) \\ & \mathbf{k}_{2}=\mathbf{f}\left(t_{n}+h, y_{n}+h \mathbf{k}_{1}\right) \\ & \mathbf{y}_{n+1}=\mathbf{y}_{n}+\frac{h}{2}\left(\mathbf{k}_{1}+\mathbf{k}_{2}\right) \end{aligned}$	[5, 9]
$\begin{aligned} & \text { Ralston's } \\ & \text { Second-Order } \\ & \text { Method } \end{aligned}$	RK2_ralston	$\begin{aligned} & \mathbf{k}_{1}=\mathbf{f}\left(t_{n}, \mathbf{y}_{n}\right) \\ & \mathbf{k}_{2}=\mathbf{f}\left(t_{n}+\frac{2 h}{3}, y_{n}+\frac{2 h \mathbf{k}_{1}}{3}\right) \\ & \mathbf{y}_{n+1}=\mathbf{y}_{n}+\frac{h}{4}\left(\mathbf{k}_{1}+3 \mathbf{k}_{2}\right) \end{aligned}$	[5, 9]

5.4 Runge-Kutta Third-Order Methods

Method	Abbreviation	Equations	Reference(s)
Classic (Kutta's) Third-Order Method	RK3	$\begin{aligned} & \mathbf{k}_{1}=\mathbf{f}\left(t_{n}, \mathbf{y}_{n}\right) \\ & \mathbf{k}_{2}=\mathbf{f}\left(t_{n}+\frac{h}{2}, \mathbf{y}_{n}+\frac{h \mathbf{k}_{1}}{2}\right) \\ & \mathbf{k}_{3}=\mathbf{f}\left(t_{n}+h, \mathbf{y}_{n}-h \mathbf{k}_{1}+2 h \mathbf{k}_{2}\right) \\ & \mathbf{y}_{n+1}=\mathbf{y}_{n}+\frac{h}{6}\left(\mathbf{k}_{1}+4 \mathbf{k}_{2}+\mathbf{k}_{3}\right) \end{aligned}$	[3, pp. 129-131][5]
Heun's Third-Order Method	RK3_heun	$\begin{aligned} & \mathbf{k}_{1}=\mathbf{f}\left(t_{n}, \mathbf{y}_{n}\right) \\ & \mathbf{k}_{2}=\mathbf{f}\left(t_{n}+\frac{h}{3}, \mathbf{y}_{n}+\frac{h \mathbf{k}_{1}}{3}\right) \\ & \mathbf{k}_{3}=\mathbf{f}\left(t_{n}+\frac{2 h}{3}, \mathbf{y}_{n}+\frac{2 h \mathbf{k}_{2}}{3}\right) \\ & \mathbf{y}_{n+1}=\mathbf{y}_{n}+\frac{h}{4}\left(\mathbf{k}_{1}+3 \mathbf{k}_{3}\right) \end{aligned}$	$\begin{gathered} {[1, \text { p. 287][3, pp. }} \\ 129-131][5] \end{gathered}$
Ralston's Third-Order Method	RK3_ralston	$\begin{aligned} & \mathbf{k}_{1}=\mathbf{f}\left(t_{n}, \mathbf{y}_{n}\right) \\ & \mathbf{k}_{2}=\mathbf{f}\left(t_{n}+\frac{h}{2}, \mathbf{y}_{n}+\frac{h \mathbf{k}_{1}}{2}\right) \\ & \mathbf{k}_{3}=\mathbf{f}\left(t_{n}+\frac{3 h}{4}, \mathbf{y}_{n}+\frac{3 h \mathbf{k}_{2}}{4}\right) \\ & \mathbf{y}_{n+1}=\mathbf{y}_{n}+\frac{h}{9}\left(2 \mathbf{k}_{1}+3 \mathbf{k}_{2}+4 \mathbf{k}_{3}\right) \end{aligned}$	[5]
Strong Stability Preserving Runge-Kutta Third-Order Method	SSPRK3	$\begin{aligned} & \mathbf{k}_{1}=\mathbf{f}\left(t_{n}, \mathbf{y}_{n}\right) \\ & \mathbf{k}_{2}=\mathbf{f}\left(t_{n}+h, \mathbf{y}_{n}+h \mathbf{k}_{1}\right) \\ & \mathbf{k}_{3}=\mathbf{f}\left(t_{n}+\frac{h}{2}, \mathbf{y}_{n}+\frac{h \mathbf{k}_{1}}{4}+\frac{h \mathbf{k}_{2}}{4}\right) \\ & \mathbf{y}_{n+1}=\mathbf{y}_{n}+\frac{h}{6}\left(\mathbf{k}_{1}+\mathbf{k}_{2}+4 \mathbf{k}_{3}\right) \end{aligned}$	[5]

5.5 Runge-Kutta Fourth-Order Methods

Method	Abbreviation	Equations	Reference(s)
	$\mathbf{k}_{1}=\mathbf{f}\left(t_{n}, \mathbf{y}_{n}\right)$		
		$\mathbf{k}_{2}=\mathbf{f}\left(t_{n}+\frac{h}{2}, \mathbf{y}_{n}+\frac{h \mathbf{k}_{1}}{2}\right)$	
Classic Fourth-Order	RK4		$\mathbf{k}_{3}=\mathbf{f}\left(t_{n}+\frac{h}{2}, \mathbf{y}_{n}+\frac{h \mathbf{k}_{2}}{2}\right)$
Method		$\mathbf{k}_{4}=\mathbf{f}\left(t_{n}+h, \mathbf{y}_{n}+h \mathbf{k}_{3}\right)$	[1, p. 288][3, p.
		$\mathbf{y}_{n+1}=\mathbf{y}_{n}+\frac{h}{6}\left(\mathbf{k}_{1}+2 \mathbf{k}_{2}+2 \mathbf{k}_{3}+\mathbf{k}_{4}\right)$	

Ralston's
Fourth-Order Method

$$
\begin{align*}
& \qquad \begin{array}{l}
\mathbf{k}_{1}=\mathbf{f}\left(t_{n}, \mathbf{y}_{n}\right) \\
\\
\\
\mathbf{k}_{2}=\mathbf{f}\left(t_{n}+0.4 h, \mathbf{y}_{n}+0.4 h \mathbf{k}_{1}\right) \\
\\
\mathbf{k}_{3}=\mathbf{f}\left(t_{n}+0.45573725 h, \mathbf{y}_{n}+0.29697761 h \mathbf{k}_{1}\right. \\
\text { RK4_ralston } \\
\\
\\
\mathbf{k}_{4}=\mathbf{f}\left(t_{n}+h, \mathbf{y}_{n}+0.15875964 h \mathbf{k}_{2}\right)
\end{array} \\
&
\end{align*}
$$

$$
\left.-3.05096516 h \mathbf{k}_{2}+3.83286476 h \mathbf{k}_{3}\right)
$$

$$
\mathbf{y}_{n+1}=\mathbf{y}_{n}+h\left(0.17476028 \mathbf{k}_{1}-0.55148066 \mathbf{k}_{2}\right.
$$

$$
\left.+1.20553560 \mathbf{k}_{3}+0.17118478 \mathbf{k}_{4}\right)
$$

$$
\mathbf{k}_{1}=\mathbf{f}\left(t_{n}, \mathbf{y}_{n}\right)
$$

3/8-Rule

$$
\begin{equation*}
\mathbf{k}_{2}=\mathbf{f}\left(t_{n}+\frac{h}{3}, \mathbf{y}_{n}+\frac{h \mathbf{k}_{1}}{3}\right) \tag{5}
\end{equation*}
$$

Fourth-Order RK4_38
$\mathbf{k}_{3}=\mathbf{f}\left(t_{n}+\frac{2 h}{3}, \mathbf{y}_{n}-\frac{h \mathbf{k}_{1}}{3}+h \mathbf{k}_{2}\right)$
$\mathbf{k}_{4}=\mathbf{f}\left(t_{n}+h, \mathbf{y}_{n}+h \mathbf{k}_{1}-h \mathbf{k}_{2}+h \mathbf{k}_{3}\right)$
$\mathbf{y}_{n+1}=\mathbf{y}_{n}+\frac{h}{8}\left(\mathbf{k}_{1}+3 \mathbf{k}_{2}+3 \mathbf{k}_{3}+\mathbf{k}_{4}\right)$

5.6 List of Butcher Tableaus

Euler Method [5]
(RK1_euler)

$$
\begin{array}{l|l}
0 & 0 \\
\hline & 1
\end{array}
$$

Midpoint Method [5]		
(RK2)	0	0
0		
$1 / 2$	$1 / 2$	0
	0	1

Heun's Second-Order

Method [5]
(RK2_heun)

0	0	0
1	1	0
	$1 / 2$	$1 / 2$

$$
\begin{array}{c|cc}
0 & 0 & 0 \\
2 / 3 & 2 / 3 & 0 \\
\hline & 1 / 4 & 3 / 4
\end{array}
$$

Classic (Kutta's)
Third-Order Method [3,

$$
\begin{array}{r}
\text { p. } 131][5] \\
(\text { RK3 })
\end{array}
$$

0	0	0	0
$1 / 2$	$1 / 2$	0	0
1	-1	2	0
	$1 / 6$	$2 / 3$	$1 / 6$

Heun's Third-Order Method [3, p. 131][5] (RK3_heun)	0 0 0 0 $1 / 3$ $1 / 3$ 0 0 $2 / 3$ 0 $2 / 3$ 0 $1 / 4$ 0 $3 / 4$			
Ralston's Third-Order Method [5] (RK3_ralston)		$\begin{gathered} 0 \\ 1 / 2 \\ 3 / 4 \\ \hline \end{gathered}$	0 0 0 2 $1 / 2$ 0 0 4 0 $3 / 4$ 0 $2 / 9$ $1 / 3$ $4 / 9$	
Strong Stability Preserving Runge-Kutta Third-Order Method [5] (SSPRK3)		$\begin{gathered} 0 \\ 1 \\ 1 / 2 \\ \hline \end{gathered}$	0 0 0 1 0 0 $1 / 4$ $1 / 4$ 0 $1 / 6$ $1 / 6$ $2 / 3$	
Classic Fourth-Order Method [3, p. 131][5] (RK4)		$\begin{array}{c\|c\|} 0 & \\ 1 / 2 \\ 1 / 2 \\ 1 & \end{array}$	0 0 0 0 $1 / 2$ 0 0 0 0 $1 / 2$ 0 0 0 0 1 0 $1 / 6$ $1 / 3$ $1 / 3$ $1 / 6$	
```Ralston's Fourth-Order Method [5] (RK4_ralston)```	$\begin{gathered} 0 \\ 0.4 \\ 0.45573725 \\ 1 \end{gathered}$	0 0.4 0.29697761 0.21810040 0.17476028	0 0   0 0   0.15875964 0   -3.05096516 3.83286476   -0.55148066 1.20553560	$\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ \hline 0.17118478 \end{gathered}$
3/8-Rule Fourth-Order Method [5] (RK4_38)		$\begin{array}{c\|c} 0 & \\ 1 / 3 & 1 \\ 2 / 3 & - \\ 1 & 1 \end{array}$	$\begin{array}{cccc} 0 & 0 & 0 & 0 \\ 1 / 3 & 0 & 0 & 0 \\ -1 / 3 & 1 & 0 & 0 \\ 1 & -1 & 1 & 0 \\ \hline 1 / 8 & 3 / 8 & 3 / 8 & 1 / 8 \end{array}$	

### 5.7 Algorithms

Algorithm 12: RK1_euler
Propagates the state vector forward one time step using the Euler [first-order] method.

## Given:

- $\mathbf{f}(t, \mathbf{y})$ - multivariate, vector-valued function defining the vector-valued ODE, $d \mathbf{y} / d t=\mathbf{f}(t, \mathbf{y})\left(\mathbf{f}: \mathbb{R} \times \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}\right)$
- $t \in \mathbb{R} \quad$ - current sample time
- $\mathbf{y} \in \mathbb{R}^{p} \quad$ - state vector (i.e. solution) at current sample time
- $h \in \mathbb{R} \quad$ - step size


## Procedure:

$$
\mathbf{y}_{\mathrm{next}}=\mathbf{y}+h \mathbf{f}(t, \mathbf{y})
$$

## Return:

- $\mathbf{y}_{\text {next }} \in \mathbb{R}^{p} \quad$ - state vector (i.e. solution) at the next sample time (i.e. $t+h$ )


## Algorithm 13: RK2

Propagates the state vector forward one time step using the midpoint method [Runge-Kutta second-order method].

## Given:

- $\mathbf{f}(t, \mathbf{y})$ - multivariate, vector-valued function defining the vector-valued ODE, $d \mathbf{y} / d t=\mathbf{f}(t, \mathbf{y})\left(\mathbf{f}: \mathbb{R} \times \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}\right)$
- $t \in \mathbb{R} \quad$ - current sample time
- $\mathbf{y} \in \mathbb{R}^{p} \quad$ - state vector (i.e. solution) at current sample time
- $h \in \mathbb{R} \quad$ - step size


## Procedure:

1. k terms.

$$
\begin{aligned}
& \mathbf{k}_{1}=\mathbf{f}(t, \mathbf{y}) \\
& \mathbf{k}_{2}=\mathbf{f}\left(t+\frac{h}{2}, y_{n}+\frac{h \mathbf{k}_{1}}{2}\right)
\end{aligned}
$$

2. State vector propagated to next sample time.

$$
\mathbf{y}_{\mathrm{next}}=\mathbf{y}+h \mathbf{k}_{2}
$$

## Return:

- $\mathbf{y}_{\text {next }} \in \mathbb{R}^{p} \quad$ - state vector (i.e. solution) at the next sample time (i.e. $t+h$ )


## Algorithm 14: RK2_heun

Propagates the state vector forward one time step using Heun's second-order method (Runge-Kutta second-order method).

## Given:

- $\mathbf{f}(t, \mathbf{y})$ - multivariate, vector-valued function defining the vector-valued ODE, $d \mathbf{y} / d t=\mathbf{f}(t, \mathbf{y})\left(\mathbf{f}: \mathbb{R} \times \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}\right)$
- $t \in \mathbb{R} \quad$ - current sample time
- $\mathbf{y} \in \mathbb{R}^{p} \quad$ - state vector (i.e. solution) at current sample time
- $h \in \mathbb{R} \quad$ - step size


## Procedure:

1. k terms.

$$
\begin{aligned}
& \mathbf{k}_{1}=\mathbf{f}(t, \mathbf{y}) \\
& \mathbf{k}_{2}=\mathbf{f}\left(t+h, y_{n}+h \mathbf{k}_{1}\right)
\end{aligned}
$$

2. State vector propagated to next sample time.

$$
\mathbf{y}_{\mathrm{next}}=\mathbf{y}+\frac{h}{2}\left(\mathbf{k}_{1}+\mathbf{k}_{2}\right)
$$

## Return:

- $\mathbf{y}_{\text {next }} \in \mathbb{R}^{p} \quad$ - state vector (i.e. solution) at the next sample time (i.e. $t+h$ )


## Algorithm 15: RK2_ralston

Propagates the state vector forward one time step using Ralston's second-order method (Runge-Kutta second-order method).

## Given:

- $\mathbf{f}(t, \mathbf{y})$ - multivariate, vector-valued function defining the vector-valued ODE, $d \mathbf{y} / d t=\mathbf{f}(t, \mathbf{y})\left(\mathbf{f}: \mathbb{R} \times \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}\right)$
- $t \in \mathbb{R} \quad$ - current sample time
- $\mathbf{y} \in \mathbb{R}^{p} \quad$ - state vector (i.e. solution) at current sample time
- $h \in \mathbb{R} \quad$ - step size


## Procedure:

1. k terms.

$$
\begin{aligned}
& \mathbf{k}_{1}=\mathbf{f}(t, \mathbf{y}) \\
& \mathbf{k}_{2}=\mathbf{f}\left(t+\frac{2 h}{3}, y_{n}+\frac{2 h \mathbf{k}_{1}}{3}\right)
\end{aligned}
$$

2. State vector propagated to next sample time.

$$
\mathbf{y}_{\mathrm{next}}=\mathbf{y}+\frac{h}{4}\left(\mathbf{k}_{1}+3 \mathbf{k}_{2}\right)
$$

## Return:

- $\mathbf{y}_{\text {next }} \in \mathbb{R}^{p} \quad$ - state vector (i.e. solution) at the next sample time (i.e. $t+h$ )


## Algorithm 16: RK3

Propagates the state vector forward one time step using [Kutta's] Runge-Kutta third-order method.

## Given:

- $\mathbf{f}(t, \mathbf{y})$ - multivariate, vector-valued function defining the vector-valued ODE, $d \mathbf{y} / d t=\mathbf{f}(t, \mathbf{y})\left(\mathbf{f}: \mathbb{R} \times \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}\right)$
- $t \in \mathbb{R} \quad$ - current sample time
- $\mathbf{y} \in \mathbb{R}^{p} \quad$ - state vector (i.e. solution) at current sample time
- $h \in \mathbb{R} \quad$ - step size


## Procedure:

1. k terms.

$$
\begin{aligned}
& \mathbf{k}_{1}=\mathbf{f}(t, \mathbf{y}) \\
& \mathbf{k}_{2}=\mathbf{f}\left(t+\frac{h}{2}, \mathbf{y}+\frac{h \mathbf{k}_{1}}{2}\right) \\
& \mathbf{k}_{3}=\mathbf{f}\left(t+h, \mathbf{y}-h \mathbf{k}_{1}+2 h \mathbf{k}_{2}\right)
\end{aligned}
$$

2. State vector propagated to next sample time.

$$
\mathbf{y}_{\mathrm{next}}=\mathbf{y}+\frac{h}{6}\left(\mathbf{k}_{1}+4 \mathbf{k}_{2}+\mathbf{k}_{3}\right)
$$

## Return:

- $\mathbf{y}_{\text {next }} \in \mathbb{R}^{p} \quad$ - state vector (i.e. solution) at the next sample time (i.e. $t+h$ )


## Algorithm 17: RK3_heun

Propagates the state vector forward one time step using Heun's third-order method (Runge-Kutta third-order method).

## Given:

- $\mathbf{f}(t, \mathbf{y})$ - multivariate, vector-valued function defining the vector-valued ODE, $d \mathbf{y} / d t=\mathbf{f}(t, \mathbf{y})\left(\mathbf{f}: \mathbb{R} \times \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}\right)$
- $t \in \mathbb{R} \quad$ - current sample time
- $\mathbf{y} \in \mathbb{R}^{p} \quad$ - state vector (i.e. solution) at current sample time
- $h \in \mathbb{R} \quad$ - step size


## Procedure:

1. k terms.

$$
\begin{aligned}
& \mathbf{k}_{1}=\mathbf{f}(t, \mathbf{y}) \\
& \mathbf{k}_{2}=\mathbf{f}\left(t+\frac{h}{3}, \mathbf{y}+\frac{h \mathbf{k}_{1}}{3}\right) \\
& \mathbf{k}_{3}=\mathbf{f}\left(t+\frac{2 h}{3}, \mathbf{y}+\frac{2 h \mathbf{k}_{2}}{3}\right)
\end{aligned}
$$

2. State vector propagated to next sample time.

$$
\mathbf{y}_{\mathrm{next}}=\mathbf{y}+\frac{h}{4}\left(\mathbf{k}_{1}+3 \mathbf{k}_{3}\right)
$$

## Return:

- $\mathbf{y}_{\text {next }} \in \mathbb{R}^{p} \quad$ - state vector (i.e. solution) at the next sample time (i.e. $t+h$ )


## Algorithm 18: RK3_ralston

Propagates the state vector forward one time step using Ralston's third-order method (Runge-Kutta third-order method).

## Given:

- $\mathbf{f}(t, \mathbf{y})$ - multivariate, vector-valued function defining the vector-valued ODE, $d \mathbf{y} / d t=\mathbf{f}(t, \mathbf{y})\left(\mathbf{f}: \mathbb{R} \times \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}\right)$
- $t \in \mathbb{R} \quad$ - current sample time
- $\mathbf{y} \in \mathbb{R}^{p} \quad$ - state vector (i.e. solution) at current sample time
- $h \in \mathbb{R} \quad$ - step size


## Procedure:

1. k terms.

$$
\begin{aligned}
& \mathbf{k}_{1}=\mathbf{f}(t, \mathbf{y}) \\
& \mathbf{k}_{2}=\mathbf{f}\left(t+\frac{h}{2}, \mathbf{y}+\frac{h \mathbf{k}_{1}}{2}\right) \\
& \mathbf{k}_{3}=\mathbf{f}\left(t+\frac{3 h}{4}, \mathbf{y}+\frac{3 h \mathbf{k}_{2}}{4}\right)
\end{aligned}
$$

2. State vector propagated to next sample time.

$$
\mathbf{y}_{\mathrm{next}}=\mathbf{y}+\frac{h}{9}\left(2 \mathbf{k}_{1}+3 \mathbf{k}_{2}+4 \mathbf{k}_{3}\right)
$$

## Return:

- $\mathbf{y}_{\text {next }} \in \mathbb{R}^{p} \quad$ - state vector (i.e. solution) at the next sample time (i.e. $t+h$ )

Algorithm 19: SSPRK3
Propagates the state vector forward one time step using the strong stability preserving Runge-Kutta third-order method.

## Given:

- $\mathbf{f}(t, \mathbf{y})$ - multivariate, vector-valued function defining the vector-valued ODE, $d \mathbf{y} / d t=\mathbf{f}(t, \mathbf{y})\left(\mathbf{f}: \mathbb{R} \times \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}\right)$
- $t \in \mathbb{R} \quad$ - current sample time
- $\mathbf{y} \in \mathbb{R}^{p} \quad$ - state vector (i.e. solution) at current sample time
- $h \in \mathbb{R} \quad$ - step size


## Procedure:

1. $\mathbf{k}$ terms.

$$
\begin{aligned}
& \mathbf{k}_{1}=\mathbf{f}(t, \mathbf{y}) \\
& \mathbf{k}_{2}=\mathbf{f}\left(t+h, \mathbf{y}+h \mathbf{k}_{1}\right) \\
& \mathbf{k}_{3}=\mathbf{f}\left(t+\frac{h}{2}, \mathbf{y}+\frac{h \mathbf{k}_{1}}{4}+\frac{h \mathbf{k}_{2}}{4}\right)
\end{aligned}
$$

2. State vector propagated to next sample time.

$$
\mathbf{y}_{\mathrm{next}}=\mathbf{y}+\frac{h}{6}\left(\mathbf{k}_{1}+\mathbf{k}_{2}+4 \mathbf{k}_{3}\right)
$$

## Return:

- $\mathbf{y}_{\text {next }} \in \mathbb{R}^{p} \quad$ - state vector (i.e. solution) at the next sample time (i.e. $t+h$ )


## Algorithm 20: RK4

Propagates the state vector forward one time step using the [classic] Runge-Kutta fourth-order method.

## Given:

- $\mathbf{f}(t, \mathbf{y})$ - multivariate, vector-valued function defining the vector-valued ODE, $d \mathbf{y} / d t=\mathbf{f}(t, \mathbf{y})\left(\mathbf{f}: \mathbb{R} \times \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}\right)$
- $t \in \mathbb{R} \quad$ - current sample time
- $\mathbf{y} \in \mathbb{R}^{p} \quad$ - state vector (i.e. solution) at current sample time
- $h \in \mathbb{R} \quad$ - step size


## Procedure:

1. k terms.

$$
\begin{aligned}
& \mathbf{k}_{1}=\mathbf{f}(t, \mathbf{y}) \\
& \mathbf{k}_{2}=\mathbf{f}\left(t+\frac{h}{2}, \mathbf{y}+\frac{h \mathbf{k}_{1}}{2}\right) \\
& \mathbf{k}_{3}=\mathbf{f}\left(t+\frac{h}{2}, \mathbf{y}+\frac{h \mathbf{k}_{2}}{2}\right) \\
& \mathbf{k}_{4}=\mathbf{f}\left(t+h, \mathbf{y}+h \mathbf{k}_{3}\right)
\end{aligned}
$$

2. State vector propagated to next sample time.

$$
\mathbf{y}_{\mathrm{next}}=\mathbf{y}+\frac{h}{6}\left(\mathbf{k}_{1}+2 \mathbf{k}_{2}+2 \mathbf{k}_{3}+\mathbf{k}_{4}\right)
$$

## Return:

- $\mathbf{y}_{\text {next }} \in \mathbb{R}^{p} \quad$ - state vector (i.e. solution) at the next sample time (i.e. $t+h$ )


## Algorithm 21: RK4_ralston

Propagates the state vector forward one time step using Ralston's fourth-order method (Runge-Kutta fourth-order method).

## Given:

- $\mathbf{f}(t, \mathbf{y})$ - multivariate, vector-valued function defining the vector-valued ODE, $d \mathbf{y} / d t=\mathbf{f}(t, \mathbf{y})\left(\mathbf{f}: \mathbb{R} \times \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}\right)$
- $t \in \mathbb{R} \quad$ - current sample time
- $\mathbf{y} \in \mathbb{R}^{p} \quad$ - state vector (i.e. solution) at current sample time
- $h \in \mathbb{R} \quad$ - step size


## Procedure:

1. k terms.

$$
\begin{aligned}
& \mathbf{k}_{1}=\mathbf{f}(t, \mathbf{y}) \\
& \mathbf{k}_{2}=\mathbf{f}\left(t+0.4 h, \mathbf{y}+0.4 h \mathbf{k}_{1}\right) \\
& \mathbf{k}_{3}=\mathbf{f}\left(t+0.45573725 h, \mathbf{y}+0.29697761 h \mathbf{k}_{1}+0.15875964 h \mathbf{k}_{2}\right) \\
& \mathbf{k}_{4}=\mathbf{f}\left(t+h, \mathbf{y}+0.21810040 h \mathbf{k}_{1}-3.05096516 h \mathbf{k}_{2}+3.83286476 h \mathbf{k}_{3}\right)
\end{aligned}
$$

2. State vector propagated to next sample time.

$$
\begin{aligned}
\mathbf{y}_{\text {next }}=\mathbf{y} & +h\left(0.17476028 \mathbf{k}_{1}-0.55148066 \mathbf{k}_{2}+1.20553560 \mathbf{k}_{3}\right. \\
& \left.+0.17118478 \mathbf{k}_{4}\right)
\end{aligned}
$$

## Return:

- $\mathbf{y}_{\text {next }} \in \mathbb{R}^{p} \quad$ - state vector (i.e. solution) at the next sample time (i.e. $t+h$ )


## Algorithm 22: RK4_38

Propagates the state vector forward one time step using the $3 / 8$ rule fourth-order method (Runge-Kutta fourth-order method).

## Given:

- $\mathbf{f}(t, \mathbf{y})$ - multivariate, vector-valued function defining the vector-valued ODE, $d \mathbf{y} / d t=\mathbf{f}(t, \mathbf{y})\left(\mathbf{f}: \mathbb{R} \times \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}\right)$
- $t \in \mathbb{R} \quad$ - current sample time
- $\mathbf{y} \in \mathbb{R}^{p} \quad$ - state vector (i.e. solution) at current sample time
- $h \in \mathbb{R} \quad$ - step size


## Procedure:

1. k terms.

$$
\begin{aligned}
& \mathbf{k}_{1}=\mathbf{f}(t, \mathbf{y}) \\
& \mathbf{k}_{2}=\mathbf{f}\left(t+\frac{h}{3}, \mathbf{y}+\frac{h \mathbf{k}_{1}}{3}\right) \\
& \mathbf{k}_{3}=\mathbf{f}\left(t+\frac{2 h}{3}, \mathbf{y}-\frac{h \mathbf{k}_{1}}{3}+h \mathbf{k}_{2}\right) \\
& \mathbf{k}_{4}=\mathbf{f}\left(t+h, \mathbf{y}+h \mathbf{k}_{1}-h \mathbf{k}_{2}+h \mathbf{k}_{3}\right)
\end{aligned}
$$

2. State vector propagated to next sample time.

$$
\mathbf{y}_{\mathrm{next}}=\mathbf{y}+\frac{h}{8}\left(\mathbf{k}_{1}+3 \mathbf{k}_{2}+3 \mathbf{k}_{3}+\mathbf{k}_{4}\right)
$$

## Return:

- $\mathbf{y}_{\text {next }} \in \mathbb{R}^{p} \quad$ - state vector (i.e. solution) at the next sample time (i.e. $t+h$ )


## (8)

# Adams-Bashforth (Multistep Predictor) Methods 

### 6.1 Adams-Bashforth Predictor

The general Adams-Bashforth predictor is defined as

$$
\begin{equation*}
\mathbf{y}_{n+1}=\mathbf{y}_{n}+h \sum_{i=1}^{m} b_{i} \mathbf{f}\left(t_{n-i+1}, \mathbf{y}_{n-i+1}\right) \tag{6.1}
\end{equation*}
$$

where $m$ is the order of the method.
To find the vector $\mathbf{b}=\left(b_{1}, \ldots, b_{m}\right)^{T}$ storing the vectors for this predictor, we first define the matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ and the vector $\mathbf{c} \in \mathbb{R}^{m}$ as

$$
\mathbf{A}=\left[\begin{array}{cccccc}
1 & 1 & 1 & \ldots & 1 & 1 \\
0 & 1 & 2 & \ldots & m & (m-1) \\
0 & 1 & 2^{2} & \ldots & m^{2} & (m-1)^{2} \\
0 & 1 & 2^{3} & \ldots & m^{3} & (m-1)^{3} \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 1 & 2^{m-1} & \ldots & m^{m-1} & (m-1)^{m-1}
\end{array}\right], \quad \mathbf{c}=\left[\begin{array}{c}
1 \\
-\frac{1}{2} \\
\frac{1}{3} \\
-\frac{1}{4} \\
\vdots \\
\frac{(-1)^{m-1}}{m}
\end{array}\right]
$$

This can be more compactly expressed as

$$
\begin{gather*}
\mathbf{A}=\left[a_{i j}\right] \quad \text { where } \quad a_{i j}=(j-1)^{i-1} \quad(\text { for } i, j=1,2, \ldots, n)  \tag{6.2}\\
\mathbf{c}=\left[c_{i}\right] \quad \text { where } \quad c_{i}=\frac{(-1)^{i-1}}{i} \quad(\text { for } i=1,2, \ldots, n) \tag{6.3}
\end{gather*}
$$

Next, we just need to solve the linear system $\mathbf{A b}=\mathbf{c}$ for $\mathbf{b}$ [10].

$$
\begin{equation*}
\mathbf{b}=\mathbf{A}^{-1} \mathbf{c} \tag{6.4}
\end{equation*}
$$

### 6.2 Adams-Bashforth Methods

Order	Abbrev.	Equations	Reference(s)
2	AB2	$\mathbf{y}_{n+1}=\mathbf{y}_{n}+\frac{h}{2}\left(3 \mathbf{f}_{n}-\mathbf{f}_{n-1}\right)$	[4][6, pp. 135-136]
3	AB3	$\mathbf{y}_{n+1}=\mathbf{y}_{n+1}=\mathbf{y}_{n}+\frac{h}{12}\left(23 \mathbf{f}_{n}-16 \mathbf{f}_{n-1}+5 \mathbf{f}_{n-2}\right)$	[4][6, pp. 135-136]
4	AB4	$\mathbf{y}_{n+1}=\mathbf{y}_{n}+\frac{h}{24}\left(55 \mathbf{f}_{n}-59 \mathbf{f}_{n-1}+37 \mathbf{f}_{n-2}-9 \mathbf{f}_{n-3}\right)$	[4][6, pp. 135-136]
5	AB5	$\begin{gathered} \mathbf{y}_{n+1}=\mathbf{y}_{n}+\frac{h}{720}\left(1901 \mathbf{f}_{n}-2774 \mathbf{f}_{n-1}+2616 \mathbf{f}_{n-2}\right. \\ \left.-1274 \mathbf{f}_{n-3}+251 \mathbf{f}_{n-4}\right) \end{gathered}$	[4][6, pp. 135-136]
6	AB6	$\begin{aligned} \mathbf{y}_{n+1}=\mathbf{y}_{n}+\frac{h}{1440} & \left(4277 \mathbf{f}_{n}-7923 \mathbf{f}_{n-1}+9982 \mathbf{f}_{n-2}\right. \\ & \left.-7298 \mathbf{f}_{n-3}+2877 \mathbf{f}_{n-4}-475 \mathbf{f}_{n-5}\right) \end{aligned}$	[6, pp. 135-136]
7	AB7	$\begin{aligned} \mathbf{y}_{n+1}=\mathbf{y}_{n}+\frac{h}{60480}( & 198721 \mathbf{f}_{n}-447288 \mathbf{f}_{n-1}+705549 \mathbf{f}_{n-2} \\ & -688256 \mathbf{f}_{n-3}+407139 \mathbf{f}_{n-4}-134472 \mathbf{f}_{n-5} \\ & \left.+19087 \mathbf{f}_{n-6}\right) \end{aligned}$	[6, pp. 135-136]
8	AB8	$\begin{aligned} \mathbf{y}_{n+1}=\mathbf{y}_{n}+\frac{h}{120960}( & 434241 \mathbf{f}_{n}-1152169 \mathbf{f}_{n-1}+2183877 \mathbf{f}_{n-2} \\ & -2664477 \mathbf{f}_{n-3}+2102243 \mathbf{f}_{n-4}-1041723 \mathbf{f}_{n-5} \\ & \left.+295767 \mathbf{f}_{n-6}-36799 \mathbf{f}_{n-7}\right) \end{aligned}$	[6, pp. 135-136]

### 6.3 Algorithms

These algorithms are written in terms of the $\mathbf{F}$ matrix discussed in Section 3.5.2.

## Algorithm 23: AB2

Propagates the state vector forward one time step using the AdamsBashforth Znd-order method.

## Given:

- $\mathbf{f}(t, \mathbf{y}) \quad$ - multivariate, vector-valued function defining the vector-valued ODE, $d \mathbf{y} / d t=\mathbf{f}(t, \mathbf{y})\left(\mathbf{f}: \mathbb{R} \times \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}\right)$
- $t \in \mathbb{R} \quad$ - current sample time
- $\mathbf{F} \in \mathbb{R}^{p \times 3} \quad-\mathbf{F}$ matrix for current sample time
- $h \in \mathbb{R} \quad$ - step size


## Procedure:

1. Updates $\mathbf{F}$ matrix with new function evaluation.

$$
\mathbf{F}=\left[\mathbf{F}^{(2)}\left|\mathbf{f}\left(t, \mathbf{F}^{(3)}\right)\right| \mathbf{F}^{(3)}\right]
$$

2. State vector propagated to next sample time.

$$
\mathbf{F}^{(3)}=\mathbf{F}^{(3)}+\frac{h}{2}\left(3 \mathbf{F}^{(2)}-\mathbf{F}^{(1)}\right)
$$

## Return:

- $\mathbf{F} \in \mathbb{R}^{p \times 3} \quad-\mathbf{F}$ matrix updated for next sample time


## Algorithm 24: AB3

Propagates the state vector forward one time step using the AdamsBashforth 3rd-order method.

## Given:

- $\mathbf{f}(t, \mathbf{y}) \quad-$ multivariate, vector-valued function defining the vector-valued ODE, $d \mathbf{y} / d t=\mathbf{f}(t, \mathbf{y})\left(\mathbf{f}: \mathbb{R} \times \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}\right)$
- $t \in \mathbb{R}$
- current sample time
- $\mathbf{F} \in \mathbb{R}^{p \times 4} \quad-\mathbf{F}$ matrix for current sample time
- $h \in \mathbb{R} \quad$ - step size


## Procedure:

1. Updates $\mathbf{F}$ matrix with new function evaluation.

$$
\mathbf{F}=\left[\mathbf{F}^{(2: 3)}\left|\mathbf{f}\left(t, \mathbf{F}^{(4)}\right)\right| \mathbf{F}^{(4)}\right]
$$

2. State vector propagated to next sample time.

$$
\mathbf{F}^{(4)}=\mathbf{F}^{4)}+\frac{h}{12}\left(23 \mathbf{F}^{(3)}-16 \mathbf{F}^{(2)}+5 \mathbf{F}^{(1)}\right)
$$

## Return:

- $\mathbf{F} \in \mathbb{R}^{p \times 4} \quad-\mathbf{F}$ matrix updated for next sample time


## Algorithm 25: AB4

Propagates the state vector forward one time step using the AdamsBashforth 4th-order method.

## Given:

- $\mathbf{f}(t, \mathbf{y}) \quad$ - multivariate, vector-valued function defining the vector-valued ODE, $d \mathbf{y} / d t=\mathbf{f}(t, \mathbf{y})\left(\mathbf{f}: \mathbb{R} \times \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}\right)$
- $t \in \mathbb{R} \quad$ - current sample time
- $\mathbf{F} \in \mathbb{R}^{p \times 5} \quad-\mathbf{F}$ matrix for current sample time
- $h \in \mathbb{R} \quad$ - step size


## Procedure:

1. Updates $\mathbf{F}$ matrix with new function evaluation.

$$
\mathbf{F}=\left[\mathbf{F}^{(2: 4)}\left|\mathbf{f}\left(t, \mathbf{F}^{(5)}\right)\right| \mathbf{F}^{(5)}\right]
$$

2. State vector propagated to next sample time.

$$
\mathbf{F}^{(5)}=\mathbf{F}^{(5)}+\frac{h}{24}\left(55 \mathbf{F}^{(4)}-59 \mathbf{F}^{(3)}+37 \mathbf{F}^{(2)}-9 \mathbf{F}^{(1)}\right)
$$

## Return:

- $\mathbf{F} \in \mathbb{R}^{p \times 5} \quad-\mathbf{F}$ matrix updated for next sample time


## Algorithm 26: AB5

Propagates the state vector forward one time step using the AdamsBashforth 5th-order method.

## Given:

- $\mathbf{f}(t, \mathbf{y})$ - multivariate, vector-valued function defining the vector-valued ODE, $d \mathbf{y} / d t=\mathbf{f}(t, \mathbf{y})\left(\mathbf{f}: \mathbb{R} \times \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}\right)$
- $t \in \mathbb{R} \quad$ - current sample time
- $\mathbf{F} \in \mathbb{R}^{p \times 6} \quad$ - $\mathbf{F}$ matrix for current sample time
- $h \in \mathbb{R} \quad$ - step size


## Procedure:

1. Updates $\mathbf{F}$ matrix with new function evaluation.

$$
\mathbf{F}=\left[\mathbf{F}^{(2: 5)}\left|\mathbf{f}\left(t, \mathbf{F}^{(6)}\right)\right| \mathbf{F}^{(6)}\right]
$$

2. State vector propagated to next sample time.

$$
\begin{aligned}
\mathbf{F}^{(6)}=\mathbf{F}^{(6)}+\frac{h}{720}( & 1901 \mathbf{F}^{(5)}-2774 \mathbf{F}^{(4)}+2616 \mathbf{F}^{(3)}-1274 \mathbf{F}^{(2)} \\
& \left.+251 \mathbf{F}^{(1)}\right)
\end{aligned}
$$

## Return:

- $\mathbf{F} \in \mathbb{R}^{p \times 6} \quad-\mathbf{F}$ matrix updated for next sample time


## Algorithm 27: AB6

Propagates the state vector forward one time step using the AdamsBashforth Gth-order method.

## Given:

- $\mathbf{f}(t, \mathbf{y})$ - multivariate, vector-valued function defining the vector-valued ODE, $d \mathbf{y} / d t=\mathbf{f}(t, \mathbf{y})\left(\mathbf{f}: \mathbb{R} \times \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}\right)$
- $t \in \mathbb{R}$
- current sample time
- $\mathbf{F} \in \mathbb{R}^{p \times 7}$
- F matrix for current sample time
- $h \in \mathbb{R}$
- step size


## Procedure:

1. Updates $\mathbf{F}$ matrix with new function evaluation.

$$
\mathbf{F}=\left[\mathbf{F}^{(2: 6)}\left|\mathbf{f}\left(t, \mathbf{F}^{(7)}\right)\right| \mathbf{F}^{(7)}\right]
$$

2. State vector propagated to next sample time.

$$
\begin{gathered}
\mathbf{F}^{(7)}=\mathbf{F}^{(7)}+\frac{h}{1440}\left(4277 \mathbf{F}^{(6)}-7923 \mathbf{F}^{(5)}+9982 \mathbf{F}^{(4)}-7298 \mathbf{F}^{(3)}\right. \\
\left.+2877 \mathbf{F}^{(2)}-475 \mathbf{F}^{(1)}\right)
\end{gathered}
$$

## Return:

- $\mathbf{F} \in \mathbb{R}^{p \times 7} \quad$ - $\mathbf{F}$ matrix updated for next sample time


## Algorithm 28: AB7

Propagates the state vector forward one time step using the AdamsBashforth 7th-order method.

## Given:

- $\mathbf{f}(t, \mathbf{y}) \quad$ - multivariate, vector-valued function defining the vector-valued ODE, $d \mathbf{y} / d t=\mathbf{f}(t, \mathbf{y})\left(\mathbf{f}: \mathbb{R} \times \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}\right)$
- $t \in \mathbb{R} \quad$ - current sample time
- $\mathbf{F} \in \mathbb{R}^{p \times 8} \quad-\mathbf{F}$ matrix for current sample time
- $h \in \mathbb{R} \quad$ - step size


## Procedure:

1. Updates $\mathbf{F}$ matrix with new function evaluation.

$$
\mathbf{F}=\left[\mathbf{F}^{(2: 7)}\left|\mathbf{f}\left(t, \mathbf{F}^{(8)}\right)\right| \mathbf{F}^{(8)}\right]
$$

2. State vector propagated to next sample time.

$$
\begin{aligned}
\mathbf{F}^{(8)}=\mathbf{F}^{(8)}+\frac{h}{60480}( & 198721 \mathbf{F}^{(7)}-447288 \mathbf{F}^{(6)}+705549 \mathbf{F}^{(5)} \\
& -688256 \mathbf{F}^{(4)}+407139 \mathbf{F}^{(3)}-134472 \mathbf{F}^{(2)} \\
& \left.+19087 \mathbf{F}^{(1)}\right)
\end{aligned}
$$

## Return:

- $\mathbf{F} \in \mathbb{R}^{p \times 8} \quad$ - $\mathbf{F}$ matrix updated for next sample time


## Algorithm 29: AB8

Propagates the state vector forward one time step using the AdamsBashforth 8th-order method.

## Given:

- $\mathbf{f}(t, \mathbf{y}) \quad$ - multivariate, vector-valued function defining the vector-valued ODE, $d \mathbf{y} / d t=\mathbf{f}(t, \mathbf{y})\left(\mathbf{f}: \mathbb{R} \times \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}\right)$
- $t \in \mathbb{R} \quad$ - current sample time
- $\mathbf{F} \in \mathbb{R}^{p \times 9} \quad-\mathbf{F}$ matrix for current sample time
- $h \in \mathbb{R} \quad$ - step size


## Procedure:

1. Updates $\mathbf{F}$ matrix with new function evaluation.

$$
\mathbf{F}=\left[\mathbf{F}^{(2: 8)}\left|\mathbf{f}\left(t, \mathbf{F}^{(9)}\right)\right| \mathbf{F}^{(9)}\right]
$$

2. State vector propagated to next sample time.

$$
\begin{aligned}
\mathbf{F}^{(9)}=\mathbf{F}^{(9)}+\frac{h}{120960}( & 434241 \mathbf{F}^{(8)}-1152169 \mathbf{F}^{(7)}+2183877 \mathbf{F}^{(6)} \\
& -2664477 \mathbf{F}^{(5)}+2102243 \mathbf{F}^{(4)}-1041723 \mathbf{F}^{(3)} \\
& \left.+295767 \mathbf{F}^{(2)}-36799 \mathbf{F}^{(1)}\right)
\end{aligned}
$$

## Return:

- $\mathbf{F} \in \mathbb{R}^{p \times 9} \quad-\mathbf{F}$ matrix updated for next sample time


## 7

# Adams-Bashforth-Moulton [Multistep Predictor-Corrector] Methods 

### 7.1 Adams-Moulton Corrector

The general Adams-Moulton corrector is defined as

$$
\begin{equation*}
\mathbf{y}_{n+1}=\mathbf{y}_{n}+h \sum_{i=1}^{m} b_{i} \mathbf{f}\left(t_{n-i+2}, \mathbf{y}_{n-i+2}\right) \tag{7.1}
\end{equation*}
$$

where $m$ is the order of the method.
To find the vector $\mathbf{b}=\left(b_{1}, \ldots, b_{m}\right)^{T}$ storing the vectors for this corrector, we first define the matrix $\mathbf{A} \in \mathbb{R}^{m \times m}$ and the vector $\mathbf{c} \in \mathbb{R}^{m}$ as

$$
\mathbf{A}=\left[\begin{array}{ccccccc}
1 & 1 & 1 & 1 & \ldots & 1 & 1 \\
-1 & 0 & 1 & 2 & \ldots & (m-3) & (m-2) \\
1 & 0 & 1 & 2^{2} & \ldots & (m-3)^{2} & (m-2)^{2} \\
\vdots & & \vdots & \vdots & & \vdots & \vdots \\
(-1)^{m-2} & 0 & 1 & 2^{m-2} & \ldots & (m-3)^{m-2} & (m-2)^{m-2} \\
(-1)^{m-1} & 0 & 1 & 2^{m-1} & \ldots & (m-3)^{m-1} & (m-2)^{m-1}
\end{array}\right], \quad \mathbf{c}=\left[\begin{array}{c}
1 \\
-\frac{1}{2} \\
\frac{1}{3} \\
\vdots \\
\frac{(-1)^{m-2}}{m-1} \\
\frac{(-1)^{m-1}}{m}
\end{array}\right]
$$

This can be more compactly expressed as

$$
\begin{equation*}
\mathbf{A}=\left[a_{i j}\right] \quad \text { where } \quad a_{i j}=(j-2)^{i-1} \quad(\text { for } i, j=1,2, \ldots, m) \tag{7.2}
\end{equation*}
$$

$$
\begin{equation*}
\mathbf{c}=\left[c_{i}\right] \quad \text { where } \quad c_{i}=\frac{(-1)^{i-1}}{i} \quad(\text { for } i=1,2, \ldots, m) \tag{7.3}
\end{equation*}
$$

Next, we just need to solve the linear system $\mathbf{A b}=\mathbf{c}$ for $\mathbf{b}$ [10].

$$
\begin{equation*}
\mathbf{b}=\mathbf{A}^{-1} \mathbf{c} \tag{7.4}
\end{equation*}
$$

### 7.2 Predictor-Corrector (PECE] Algorithms

Let $\mathbf{f}_{k}$ represent the evaluation of the $\operatorname{ODE} d \mathbf{y} / d t=\mathbf{f}(t, \mathbf{y})$ at time $t_{k}$ and state $\mathbf{y}_{k}$.

$$
\mathbf{f}_{k}=\mathbf{f}\left(t_{k}, \mathbf{y}_{k}\right)
$$

The Adams-Bashforth methods discussed in Chapter 6 were explicit methods, since the state vector at the next sample time could be calculated explicitly from evaluating the ODE using the state vector at previous sample times. In general, this can be expressed as

$$
\mathbf{y}_{k+1}=\mathbf{g}\left(\mathbf{f}_{k}, \mathbf{f}_{k-1}, \ldots, \mathbf{f}_{0}\right)
$$

However, the Adams-Moulton corrector introduced in Section 7.1 defines implicit methods, since the state vector at the next sample time is expressed as a function of $\mathbf{f}_{k+1}$, where $\mathbf{f}_{k+1}=\mathbf{f}\left(t_{k+1}, \mathbf{y}_{k+1}\right)$ (i.e. $\mathbf{y}_{k+1}$ is essentially a function of itself):

$$
\mathbf{y}_{k+1}=\mathbf{g}\left(\mathbf{f}_{k+1}, \mathbf{f}_{k}, \mathbf{f}_{k-1}, \ldots, \mathbf{f}_{0}\right)
$$

Predictor-corrector algorithms combine predictor and corrector methods and are defined using the following four steps:

1. Predict $\mathbf{y}_{k+1}$ at time $t_{k+1}$ using an explicit method of order $m$. Since this is a predicted value, we denote it using a hat as $\hat{\mathbf{y}}_{k+1}$.

$$
\hat{\mathbf{y}}_{k+1}=\mathbf{g}\left(\mathbf{f}_{k}, \mathbf{f}_{k-1}, \ldots, \mathbf{f}_{0}\right)
$$

2. Evaluate the $\operatorname{ODE} d \mathbf{y} / d t=\mathbf{f}(t, \mathbf{y})$ at $t_{k+1}$ and $\hat{\mathbf{y}}_{k+1}$.

$$
\hat{\mathbf{f}}_{k+1}=\mathbf{f}\left(t_{k+1}, \hat{\mathbf{y}}_{k+1}\right)
$$

3. Correct the prediction for $\mathbf{y}_{k+1}$ using an implicit method of order $m$. Since this is the corrected value (that we are assuming to be the true value, i.e. the solution), we do not denote it using a hat.

$$
\mathbf{y}_{k+1}=\mathbf{g}\left(\hat{\mathbf{f}}_{k+1}, \mathbf{f}_{k}, \mathbf{f}_{k-1}, \ldots, \mathbf{f}_{0}\right)
$$

4. Evaluate the ODE at the corrected value for the state vector at the $(k+1)$ th sample time.

$$
\mathbf{f}_{k+1}=\mathbf{f}\left(t_{k+1}, \mathbf{y}_{k+1}\right)
$$

Due to the four steps above (predict, evaluate, correct, evaluate), predictor-corrector algorithms are also known as PECE algorithms [3, pp. 112-113][6, p. 138]. In their implementation in the IVP Solver Toolbox (general implementation outlined in Section 3.9), the steps are slightly condensed/reordered as follows:

1. Evaluate the $\operatorname{ODE} d \mathbf{y} / d t=\mathbf{f}(t, \mathbf{y})$ at $t_{k}$ and $\mathbf{y}_{k}$.

$$
\mathbf{f}_{k}=\mathbf{f}\left(t_{k}, \mathbf{y}_{k}\right)
$$

2. Predict $\mathbf{y}_{k+1}$ at time $t_{k+1}$ using an explicit method of order $m$. Since this is a predicted value, we denote it using a hat as $\hat{\mathbf{y}}_{k+1}$.

$$
\hat{\mathbf{y}}_{k+1}=\mathbf{g}\left(\mathbf{f}_{k}, \mathbf{f}_{k-1}, \ldots, \mathbf{f}_{0}\right)
$$

3. Correct the prediction for $\mathbf{y}_{k+1}$ using an implicit method of order $m$. Since this is the corrected value (that we are assuming to be the true value, i.e. the solution), we do not denote it using a hat.

$$
\mathbf{y}_{k+1}=\mathbf{g}\left(\mathbf{f}\left(t_{k+1}, \hat{\mathbf{y}}_{k+1}\right), \mathbf{f}_{k}, \mathbf{f}_{k-1}, \ldots, \mathbf{f}_{0}\right)
$$

### 7.3 Adams-Bashforth-Moulton Methods

Order	Abbrev.	Equations	Reference(s)
2	ABM2	$\begin{aligned} \hat{\mathbf{y}}_{n+1} & =\mathbf{y}_{n}+\frac{h}{2}\left(3 \mathbf{f}_{n}-\mathbf{f}_{n-1}\right) \\ \mathbf{y}_{n+1} & =\mathbf{y}_{n}+\frac{h}{2}\left[\mathbf{f}\left(t_{n+1}, \hat{\mathbf{y}}_{n+1}\right)+\mathbf{f}_{n}\right] \end{aligned}$	[4][6, pp. 135-138]
3	ABM3	$\begin{aligned} & \hat{\mathbf{y}}_{n+1}=\mathbf{y}_{n}+\frac{h}{12}\left(23 \mathbf{f}_{n}-16 \mathbf{f}_{n-1}+5 \mathbf{f}_{n-2}\right) \\ & \mathbf{y}_{n+1}=\mathbf{y}_{n}+\frac{h}{12}\left[5 \mathbf{f}\left(t_{n+1}, \hat{\mathbf{y}}_{n+1}\right)+8 \mathbf{f}_{n}-\mathbf{f}_{n-1}\right] \end{aligned}$	[4][6, pp. 135-138]
4	ABM4	$\begin{aligned} & \hat{\mathbf{y}}_{n+1}=\mathbf{y}_{n}+\frac{h}{24}\left(55 \mathbf{f}_{n}-59 \mathbf{f}_{n-1}+37 \mathbf{f}_{n-2}-9 \mathbf{f}_{n-3}\right) \\ & \mathbf{y}_{n+1}=\mathbf{y}_{n}+\frac{h}{24}\left[9 \mathbf{f}\left(t_{n+1}, \hat{\mathbf{y}}_{n+1}\right)+19 \mathbf{f}_{n}-5 \mathbf{f}_{n-1}+\mathbf{f}_{n-2}\right] \end{aligned}$	[4][6, pp. 135-138]
5	ABM5	$\begin{aligned} \hat{\mathbf{y}}_{n+1}=\mathbf{y}_{n}+\frac{h}{720}( & 1901 \mathbf{f}_{n}-2774 \mathbf{f}_{n-1}+2616 \mathbf{f}_{n-2} \\ & \left.-1274 \mathbf{f}_{n-3}+251 \mathbf{f}_{n-4}\right) \\ \mathbf{y}_{n+1}=\mathbf{y}_{n}+\frac{h}{720}[ & 251 \mathbf{f}\left(t_{n+1}, \hat{\mathbf{y}}_{n+1}\right)+646 \mathbf{f}_{n}-264 \mathbf{f}_{n-1} \\ & \left.+106 \mathbf{f}_{n-2}-19 \mathbf{f}_{n-3}\right] \end{aligned}$	[4][6, pp. 135-138]
6	ABM6	$\begin{aligned} \hat{\mathbf{y}}_{n+1}=\mathbf{y}_{n}+\frac{h}{1440}( & 4277 \mathbf{f}_{n}-7923 \mathbf{f}_{n-1}+9982 \mathbf{f}_{n-2} \\ & \left.-7298 \mathbf{f}_{n-3}+2877 \mathbf{f}_{n-4}-475 \mathbf{f}_{n-5}\right) \\ \mathbf{y}_{n+1}=\mathbf{y}_{n}+\frac{h}{1440}[ & 475 \mathbf{f}\left(t_{n+1}, \hat{\mathbf{y}}_{n+1}\right)+1427 \mathbf{f}_{n}-798 \mathbf{f}_{n-1} \\ & \left.+482 \mathbf{f}_{n-2}-173 \mathbf{f}_{n-3}+27 \mathbf{f}_{n-4}\right] \end{aligned}$	[6, pp. 135-138]
7	ABM7	$\begin{aligned} \hat{\mathbf{y}}_{n+1}=\mathbf{y}_{n}+\frac{h}{60480}( & 198721 \mathbf{f}_{n}-447288 \mathbf{f}_{n-1}+705549 \mathbf{f}_{n-2} \\ & -688256 \mathbf{f}_{n-3}+407139 \mathbf{f}_{n-4}-134472 \mathbf{f}_{n-5} \\ & \left.+19087 \mathbf{f}_{n-6}\right) \\ \mathbf{y}_{n+1}=\mathbf{y}_{n}+\frac{h}{60480}[ & 19087 \mathbf{f}\left(t_{n+1}, \hat{\mathbf{y}}_{n+1}\right)+65112 \mathbf{f}_{n}-46461 \mathbf{f}_{n-1} \\ & +37504 \mathbf{f}_{n-2}-20211 \mathbf{f}_{n-3}+6312 \mathbf{f}_{n-4} \\ & \left.-863 \mathbf{f}_{n-5}\right] \end{aligned}$	[6, pp. 135-138]
8	ABM8	$\begin{aligned} \hat{\mathbf{y}}_{n+1}=\mathbf{y}_{n}+\frac{h}{120960}( & 434241 \mathbf{f}_{n}-1152169 \mathbf{f}_{n-1}+2183877 \mathbf{f}_{n-2} \\ & -2664477 \mathbf{f}_{n-3}+2102243 \mathbf{f}_{n-4}-1041723 \mathbf{f}_{n-5} \\ & \left.+295767 \mathbf{f}_{n-6}-36799 \mathbf{f}_{n-7}\right) \\ \mathbf{y}_{n+1}=\mathbf{y}_{n}+\frac{h}{120960}[ & 36799 \mathbf{f}\left(t_{n+1}, \hat{\mathbf{y}}_{n+1}\right)+139849 \mathbf{f}_{n}-121797 \mathbf{f}_{n-1} \\ & +123133 \mathbf{f}_{n-2}-88547 \mathbf{f}_{n-3} \\ & \left.+41499 \mathbf{f}_{n-4}-11351 \mathbf{f}_{n-5}+1375 \mathbf{f}_{n-6}\right] \end{aligned}$	[6, pp. 135-138]

### 7.4 Algorithms

These algorithms are written in terms of the $\mathbf{F}$ matrix discussed in Section 3.5.2.

## Algorithm 30: ABM2

Propagates the state vector forward one time step using the Adams-Bashforth-Moulton 2nd-order method.

## Given:

- $\mathbf{f}(t, \mathbf{y})$ - multivariate, vector-valued function defining the vector-valued ODE, $d \mathbf{y} / d t=\mathbf{f}(t, \mathbf{y})\left(\mathbf{f}: \mathbb{R} \times \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}\right)$
- $t \in \mathbb{R}$
- current sample time
- $\mathbf{F} \in \mathbb{R}^{p \times 3} \quad-\mathbf{F}$ matrix for current sample time
- $h \in \mathbb{R} \quad$ - step size


## Procedure:

1. Updates $\mathbf{F}$ matrix with new function evaluation.

$$
\mathbf{F}=\left[\mathbf{F}^{(2)}\left|\mathbf{f}\left(t, \mathbf{F}^{(3)}\right)\right| \mathbf{F}^{(3)}\right]
$$

2. Predictor step.

$$
\hat{\mathbf{y}}=\mathbf{F}^{(3)}+\frac{h}{2}\left(3 \mathbf{F}^{(2)}-\mathbf{F}^{(1)}\right)
$$

3. Corrector step.

$$
\mathbf{F}^{(3)}=\mathbf{F}^{(3)}+\frac{h}{2}\left[\mathbf{f}(t+h, \hat{\mathbf{y}})+\mathbf{F}^{(2)}\right]
$$

## Return:

- $\mathbf{F} \in \mathbb{R}^{p \times 3} \quad-\mathbf{F}$ matrix updated for next sample time


## Algorithm 31: ABM3

Propagates the state vector forward one time step using the Adams-Bashforth-Moulton 3rd-order method.

## Given:

- $\mathbf{f}(t, \mathbf{y}) \quad$ - multivariate, vector-valued function defining the vector-valued ODE, $d \mathbf{y} / d t=\mathbf{f}(t, \mathbf{y})\left(\mathbf{f}: \mathbb{R} \times \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}\right)$
- $t \in \mathbb{R} \quad$ - current sample time
- $\mathbf{F} \in \mathbb{R}^{p \times 4} \quad-\mathbf{F}$ matrix for current sample time
- $h \in \mathbb{R} \quad$ - step size


## Procedure:

1. Updates $\mathbf{F}$ matrix with new function evaluation.

$$
\mathbf{F}=\left[\mathbf{F}^{(2: 3)}\left|\mathbf{f}\left(t, \mathbf{F}^{(4)}\right)\right| \mathbf{F}^{(4)}\right]
$$

2. Predictor step.

$$
\hat{\mathbf{y}}=\mathbf{F}^{(4)}+\frac{h}{12}\left(23 \mathbf{F}^{(3)}-16 \mathbf{F}^{(2)}+5 \mathbf{F}^{(1)}\right)
$$

3. Corrector step.

$$
\mathbf{F}^{(4)}=\mathbf{F}^{(4)}+\frac{h}{12}\left[5 \mathbf{f}(t+h, \hat{\mathbf{y}})+8 \mathbf{F}^{(3)}-\mathbf{F}^{(2)}\right]
$$

## Return:

- $\mathbf{F} \in \mathbb{R}^{p \times 4} \quad-\mathbf{F}$ matrix updated for next sample time


## Algorithm 32: ABM4

Propagates the state vector forward one time step using the Adams-Bashforth-Moulton 4th-order method.

## Given:

- $\mathbf{f}(t, \mathbf{y}) \quad-$ multivariate, vector-valued function defining the vector-valued ODE, $d \mathbf{y} / d t=\mathbf{f}(t, \mathbf{y})\left(\mathbf{f}: \mathbb{R} \times \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}\right)$
- $t \in \mathbb{R}$
- current sample time
- $\mathbf{F} \in \mathbb{R}^{p \times 5}$
- F matrix for current sample time
- $h \in \mathbb{R}$
- step size


## Procedure:

1. Updates $\mathbf{F}$ matrix with new function evaluation.

$$
\mathbf{F}=\left[\mathbf{F}^{(2: 4)}\left|\mathbf{f}\left(t, \mathbf{F}^{(5)}\right)\right| \mathbf{F}^{(5)}\right]
$$

2. Predictor step.

$$
\hat{\mathbf{y}}=\mathbf{F}^{(5)}+\frac{h}{24}\left(55 \mathbf{F}^{(4)}-59 \mathbf{F}^{(3)}+37 \mathbf{F}^{(2)}-9 \mathbf{F}^{(1)}\right)
$$

3. Corrector step.

$$
\mathbf{F}^{(5)}=\mathbf{F}^{(5)}+\frac{h}{24}\left[9 \mathbf{f}(t+h, \hat{\mathbf{y}})+19 \mathbf{F}^{(4)}-5 \mathbf{F}^{(3)}+\mathbf{F}^{(2)}\right]
$$

## Return:

- $\mathbf{F} \in \mathbb{R}^{p \times 5} \quad-\mathbf{F}$ matrix updated for next sample time


## Algorithm 33: ABM5

Propagates the state vector forward one time step using the Adams-Bashforth-Moulton 5th-order method.

## Given:

- $\mathbf{f}(t, \mathbf{y}) \quad-$ multivariate, vector-valued function defining the vector-valued ODE, $d \mathbf{y} / d t=\mathbf{f}(t, \mathbf{y})\left(\mathbf{f}: \mathbb{R} \times \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}\right)$
- $t \in \mathbb{R} \quad$ - current sample time
- $\mathbf{F} \in \mathbb{R}^{p \times 6} \quad-\mathbf{F}$ matrix for current sample time
- $h \in \mathbb{R} \quad$ - step size


## Procedure:

1. Updates $\mathbf{F}$ matrix with new function evaluation.

$$
\mathbf{F}=\left[\mathbf{F}^{(2: 5)}\left|\mathbf{f}\left(t, \mathbf{F}^{(6)}\right)\right| \mathbf{F}^{(6)}\right]
$$

2. Predictor step.

$$
\hat{\mathbf{y}}=\mathbf{F}^{(6)}+\frac{h}{720}\left(1901 \mathbf{F}^{(5)}-2774 \mathbf{F}^{(4)}+2616 \mathbf{F}^{(3)}-1274 \mathbf{F}^{(2)}+251 \mathbf{F}^{(1)}\right)
$$

3. Corrector step.

$$
\begin{aligned}
& \mathbf{F}^{(6)}=\mathbf{F}^{(6)}+\frac{h}{720}[ 251 \mathbf{f}(t+h, \hat{\mathbf{y}})+646 \mathbf{F}^{(5)}-264 \mathbf{F}^{(4)}+106 \mathbf{F}^{(3)} \\
&\left.-19 \mathbf{F}^{(2)}\right]
\end{aligned}
$$

## Return:

- $\mathbf{F} \in \mathbb{R}^{p \times 6} \quad$ - $\mathbf{F}$ matrix updated for next sample time


## Algorithm 34: ABM6

Propagates the state vector forward one time step using the Adams-Bashforth-Moulton Gth-order method.

## Given:

- $\mathbf{f}(t, \mathbf{y})$ - multivariate, vector-valued function defining the vector-valued ODE, $d \mathbf{y} / d t=\mathbf{f}(t, \mathbf{y})\left(\mathbf{f}: \mathbb{R} \times \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}\right)$
- $t \in \mathbb{R} \quad$ - current sample time
- $\mathbf{F} \in \mathbb{R}^{p \times 7} \quad-\mathbf{F}$ matrix for current sample time
- $h \in \mathbb{R} \quad$ - step size


## Procedure:

1. Updates $\mathbf{F}$ matrix with new function evaluation.

$$
\mathbf{F}=\left[\mathbf{F}^{(2: 6)}\left|\mathbf{f}\left(t, \mathbf{F}^{(7)}\right)\right| \mathbf{F}^{(7)}\right]
$$

2. Predictor step.

$$
\begin{aligned}
\hat{\mathbf{y}}=\mathbf{F}^{(7)}+\frac{h}{1440}( & 4277 \mathbf{F}^{(6)}-7923 \mathbf{F}^{(5)}+9982 \mathbf{F}^{(4)}-7298 \mathbf{F}^{(3)} \\
& \left.+2877 \mathbf{F}^{(2)}-475 \mathbf{F}^{(1)}\right)
\end{aligned}
$$

3. Corrector step.

$$
\begin{aligned}
\mathbf{F}^{(7)}=\mathbf{F}^{(7)}+\frac{h}{1440}[ & 475 \mathbf{f}(t+h, \hat{\mathbf{y}})+1427 \mathbf{F}^{(6)}-798 \mathbf{F}^{(5)}+482 \mathbf{F}^{(4)} \\
& \left.-173 \mathbf{F}^{(3)}+27 \mathbf{F}^{(2)}\right]
\end{aligned}
$$

## Return:

- $\mathbf{F} \in \mathbb{R}^{p \times 7} \quad$ - $\mathbf{F}$ matrix updated for next sample time


## Algorithm 35: ABM7

Propagates the state vector forward one time step using the Adams-Bashforth-Moulton 7th-order method.

## Given:

- $\mathbf{f}(t, \mathbf{y})$ - multivariate, vector-valued function defining the vector-valued ODE, $d \mathbf{y} / d t=\mathbf{f}(t, \mathbf{y})\left(\mathbf{f}: \mathbb{R} \times \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}\right)$
- $t \in \mathbb{R} \quad$ - current sample time
- $\mathbf{F} \in \mathbb{R}^{p \times 8} \quad-\mathbf{F}$ matrix for current sample time
- $h \in \mathbb{R} \quad$ - step size


## Procedure:

1. Updates $\mathbf{F}$ matrix with new function evaluation.

$$
\mathbf{F}=\left[\mathbf{F}^{(2: 7)}\left|\mathbf{f}\left(t, \mathbf{F}^{(8)}\right)\right| \mathbf{F}^{(8)}\right]
$$

2. Predictor step.

$$
\begin{aligned}
\hat{\mathbf{y}}=\mathbf{F}^{(8)}+\frac{h}{60480}( & 198721 \mathbf{F}^{(7)}-447288 \mathbf{F}^{(6)}+705549 \mathbf{F}^{(5)} \\
& -688256 \mathbf{F}^{(4)}+407139 \mathbf{F}^{(3)}-134472 \mathbf{F}^{(2)} \\
& \left.+19087 \mathbf{F}^{(1)}\right)
\end{aligned}
$$

3. Corrector step.

$$
\begin{aligned}
& \mathbf{F}^{(8)}=\mathbf{F}^{(8)}+\frac{h}{60480}[ 19087 \mathbf{f}(t+h, \hat{\mathbf{y}})+ \\
& 65112 \mathbf{F}^{(7)}-46461 \mathbf{F}^{(6)} \\
&\left.+37504 \mathbf{F}^{(5)}-20211 \mathbf{F}^{(4)}+6312 \mathbf{F}^{(3)}-863 \mathbf{F}^{(2)}\right]
\end{aligned}
$$

## Return:

- $\mathbf{F} \in \mathbb{R}^{p \times 8} \quad-\mathbf{F}$ matrix updated for next sample time


## Algorithm 36: ABM8

Propagates the state vector forward one time step using the Adams-Bashforth-Moulton 8th-order method.

## Given:

- $\mathbf{f}(t, \mathbf{y})$ - multivariate, vector-valued function defining the vector-valued ODE, $d \mathbf{y} / d t=\mathbf{f}(t, \mathbf{y})\left(\mathbf{f}: \mathbb{R} \times \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}\right)$
- $t \in \mathbb{R}$
- current sample time
- $\mathbf{F} \in \mathbb{R}^{p \times 9} \quad-\mathbf{F}$ matrix for current sample time
- $h \in \mathbb{R} \quad$ - step size


## Procedure:

1. Updates $\mathbf{F}$ matrix with new function evaluation.

$$
\mathbf{F}=\left[\mathbf{F}^{(2: 8)}\left|\mathbf{f}\left(t, \mathbf{F}^{(9)}\right)\right| \mathbf{F}^{(9)}\right]
$$

2. Predictor step.

$$
\begin{aligned}
\hat{\mathbf{y}}=\mathbf{F}^{(9)}+\frac{h}{120960}( & 434241 \mathbf{F}^{(8)}-1152169 \mathbf{F}^{(7)}+2183877 \mathbf{F}^{(6)} \\
& -2664477 \mathbf{F}^{(5)}+2102243 \mathbf{F}^{(4)}-1041723 \mathbf{F}^{(3)} \\
& \left.+295767 \mathbf{F}^{(2)}-36799 \mathbf{F}^{(1)}\right)
\end{aligned}
$$

3. Corrector step.

$$
\begin{aligned}
\mathbf{F}^{(9)}=\mathbf{F}^{(9)}+\frac{h}{120960}[ & 36799 \mathbf{f}(t+h, \hat{\mathbf{y}})+139849 \mathbf{F}^{(8)}-121797 \mathbf{F}^{(7)} \\
& +123133 \mathbf{F}^{(6)}-88547 \mathbf{F}^{(5)}+41499 \mathbf{F}^{(4)} \\
& \left.-11351 \mathbf{F}^{(3)}+1375 \mathbf{F}^{(2)}\right]
\end{aligned}
$$

## Return:

- $\mathbf{F} \in \mathbb{R}^{p \times 9} \quad$ - $\mathbf{F}$ matrix updated for next sample time


## References

[1] Richard L. Burden and J. Douglas Faires. Numerical Analysis. th $^{\text {th }}$. Boston, MA: Brooks/Cole, Cengage Learning, 2011.
[2] Euler method. Wikipedia. Accessed: December 12, 2021. URL: https://en.wikipedia.org/wiki/ Euler_method.
[3] David F. Griffiths and Desmond J. Higham. Numerical Methods for Ordinary Differential Equations: Initial Value Problems. London, UK: Springer-Verlag, 2010.
[4] Linear multistep method. Wikipedia. Accessed: November 1, 2021. URL: https://en.wikipedia.org/ wiki/Linear_multistep_method.
[5] List of Runge-Kutta methods. Wikipedia. Accessed: November 1, 2021. URL: https: / /en • wikipedia . org/wiki/List_of_Runge-Kutta_methods.
[6] Oliver Montenbruck and Eberhard Gill. Satellite Orbits - Models, Methods, Applications. $4^{\text {th }}$. Berlin Heidelberg: Springer-Verlag, 2012.
[7] Multidimensional Arrays. MathWorks. Accessed: August 30, 2022. URL: https: / /www.mathworks.com/ help/matlab/math/multidimensional-arrays.html.
[8] Passing Extra Parameters. MathWorks. Accessed: June 10, 2020. URL: https : / / www • mathworks . com / help/optim/ug/passing-extra-parameters.html.
[9] Runge-Kutta methods. Wikipedia. Accessed: November 1, 2021. URL: https : / / en . wikipedia . org / wiki/Runge-Kutta_methods.
[10] Baba Seidu. "A Matrix System for Computing the Coefficients of the Adams Bashforth-Moulton PredictorCorrector formulae". In: International Journal of Computational and Applied Mathematics 6.3 (2011), pp. 215220. URL: https://www.researchgate.net/publication/249655976_A_Matrix_System_for_ Computing_the_Coefficients_of_the_Adams_Bashforth-Moulton_Predictor-Corrector_ formulae.
[11] State variable. Wikipedia. Accessed: December 3, 2020. URL: https://en.wikipedia.org/wiki/State_ variable.
[12] State vector (navigation). Wikipedia. Accessed: December 3, 2020. URL: https://en.wikipedia.org/ wiki/State_vector_(navigation).


[^0]:    1 Sometimes also referred to as "ODE solvers"
    2 The independent variable is denoted as $t$ because in most cases IVP solvers are used in situations where time is the independent variable.

[^1]:    1 While the force, $F$, certainly does affect how the mass will move in the future, it does not affect how the mass is moving in this instant (i.e. it affects the acceleration instantaneously, but the position and velocity cannot change instantaneously). As an example, we can consider two cars who, at some instant, are exactly side by side traveling at the exact same speed. In one of the cars, the driver is pushing the gas pedal, while in the other car, the driver has slammed on the brakes. The fact that the drivers are applying different forces to their car has no bearing on the fact that at the instant considered, the state of the cars are the same; they are both at the same position, going at the same speed. The forces that the drivers are applying certainly do, however, affect how the car will be moving in the following instant.
    2 Since this system is linear, we could also write it as

[^2]:    1 An example of a behavior we could assume between consecutive sample times is that $f(t, y)=f\left(t_{n}, y_{n}\right) \forall t \in\left[t_{n}, t_{n+1}\right)$ (i.e. the ODE is constant between the two sample times). This results in the Euler method; see Section 5.2.

[^3]:    1 Not to be confused with the matrix $\mathbf{A}$ in the dynamics equation $\dot{\mathbf{x}}=\mathbf{A x}+\mathbf{B u}$, which is also often called the state matrix (in the context of linear systems and control theory).

[^4]:    2 See Section 3.7 for a discussion of event functions.

[^5]:    3 See [7] for the definition of a page of an array.

[^6]:    1 https://tamaskis.github.io/IVP_Solver_Toolbox-MATLAB/tableau2eqns_doc.html

