
Solving Initial Value
Problems for ODEs
using Fixed-Step Solvers

Tamas Kis | tamas.a.kis@outlook.com

Tamas Kis
https://tamaskis.github.io

Copyright © 2021 Tamas Kis.

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/ or send a letter

to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

https://tamaskis.github.io
http://creativecommons.org/licenses/by-nc-sa/4.0/

Contents

Contents iii

List of Algorithms v

I Basics of Initial Value Problems 1

1 Initial Value Problems 2

1.1 Definition . 2

1.2 Converting Higher-Order IVPs to First-Order IVPs: The Scalar Case 3

1.3 Converting Higher-Order IVPs to First-Order IVPs: The Vector Case 6

2 Defining Systems Mathematically and Computationally 11

2.1 State Vectors and State Space . 11

2.2 Coupled ODEs . 16

2.3 Extra Parameters . 17

2.3.1 Passing Extra Parameters . 17

2.3.2 Recovering Extra Parameters . 18

II IVP Solvers and Discretization 20

3 IVP Solvers for Vector-Valued Initial Value Problems 21

3.1 The General Solution . 21

3.2 Discretization and Solution Arrays . 21

3.2.1 Solution Matrix: Row Form . 22

3.2.2 Solution Matrix: Column Form . 23

3.3 A Brute Force Solution Method . 23

3.4 General Form of an IVP solver . 25

3.5 Propagation Functions . 26

3.5.1 Single-Step Methods and One-Step Propagation . 27

3.5.2 Multistep Methods . 27

3.6 Time Detection Mode . 28

3.6.1 Integrating Backwards in Time . 29

3.7 Event Detection Mode . 29

3.8 Converting Time Detection Mode to Event Detection Mode . 31

3.8.1 Premature Termination Due to Numerical Issues . 32

3.8.2 Integrating Backwards in Time . 33

3.9 IVP Solver Algorithm . 33

3.9.1 Starting Multistep Solvers . 37

3.9.2 Expanding Solution Arrays . 38

3.9.3 0- vs. 1-Based Indexing . 38

4 Matrix-Valued Initial Value Problems 39

iv CONTENTS

4.1 Definition . 39

4.2 Transforming a Matrix-Valued IVP into a Vector-Valued IVP . 39

4.3 Obtaining the Matrix Results . 43

4.4 One-Step Propagation for Matrix-Valued ODEs . 45

4.5 IVP Solver Algorithm for Matrix-Valued IVPs . 45

III Fixed-Step Integration Methods 47

5 Explicit Runga-Kutta (Single-Step) Methods 48

5.1 General Form of the Explicit Runge-Kutta Method . 48

5.2 Euler Method . 49

5.3 Runge-Kutta Second-Order Methods . 50

5.4 Runge-Kutta Third-Order Methods . 50

5.5 Runge-Kutta Fourth-Order Methods . 51

5.6 List of Butcher Tableaus . 52

5.7 Algorithms . 54

6 Adams-Bashforth (Multistep Predictor) Methods 61

6.1 Adams-Bashforth Predictor . 61

6.2 Adams-Bashforth Methods . 62

6.3 Algorithms . 62

7 Adams-Bashforth-Moulton (Multistep Predictor-Corrector) Methods 66

7.1 Adams-Moulton Corrector . 66

7.2 Predictor-Corrector (PECE) Algorithms . 67

7.3 Adams-Bashforth-Moulton Methods . 68

7.4 Algorithms . 68

References 73

List of Algorithms

IVP Solver Algorithms

Algorithm 3 solve_ivp Fixed-step IVP solvers for solving vector-valued initial value

problems . 33

Algorithm 11 solve_ivp_matrix Fixed-step IVP solvers for solving matrix-valued initial value

problems . 45

Utilities for IVP Solvers

Algorithm 4 expand_ivp_arrays Expands the arrays storing the IVP solution 38

Algorithm 6 mat2vec_ODE Transforms a matrix-valued ODE into a vector-valued ODE . . . 41

Algorithm 7 mat2vec_IC Transforms the initial condition for a matrix-valued IVP into

the initial condition for its corresponding vector-valued IVP . . . 42

Algorithm 9 mat2vec_E Transforms the event function for a matrix-valued IVP into the

event function for its corresponding vector-valued IVP 43

Algorithm 10 vec2mat_sol Transforms the solution matrix for a vector-valued IVP into the

solution array for its corresponding matrix-valued IVP 44

Single-Step Methods

Algorithm 12 RK1_euler Euler (first-order) method . 54

Algorithm 13 RK2 Midpoint method (Runge-Kutta 2nd-order method) 54

Algorithm 14 RK2_heun Heun’s 2nd-order method (Runge-Kutta 2nd-order method) 55

Algorithm 15 RK2_ralston Ralston’s 2nd-order method (Runge-Kutta 2nd-order method) . . 55

Algorithm 16 RK3 (Kutta’s) Runge-Kutta 3rd-order method . 56

Algorithm 17 RK3_heun Heun’s 3rd-order method (Runge-Kutta 3rd-order method) 56

Algorithm 18 RK3_ralston Ralston’s 3rd-order method (Runge-Kutta 3rd-order method) . . 57

Algorithm 19 SSPRK3 Strong stability preserving Runge-Kutta 3rd-order method 57

Algorithm 20 RK4 (Classic) Runge-Kutta 4th-order method . 58

Algorithm 21 RK4_ralston Ralston’s 4th-order method (Runge-Kutta 4th-order method) . . . 59

Algorithm 22 RK4_38 3/8-rule 4th-order method (Runge-Kutta 4th-order method) 59

vi CONTENTS

Multitep Predictor Methods

Algorithm 23 AB2 Adams-Bashforth-Moulton 2nd-order method 62

Algorithm 24 AB3 Adams-Bashforth-Moulton 3rd-order method. 63

Algorithm 25 AB4 Adams-Bashforth-Moulton 4th-order method 63

Algorithm 26 AB5 Adams-Bashforth-Moulton 5th-order method 64

Algorithm 27 AB6 Adams-Bashforth-Moulton 6th-order method 64

Algorithm 28 AB7 Adams-Bashforth-Moulton 7th-order method 65

Algorithm 29 AB8 Adams-Bashforth-Moulton 8th-order method 65

Multitep Predictor-Corrector Methods

Algorithm 30 ABM2 Adams-Bashforth 2nd-order method . 69

Algorithm 31 ABM3 Adams-Bashforth 3rd-order method . 69

Algorithm 32 ABM4 Adams-Bashforth 4th-order method . 70

Algorithm 33 ABM5 Adams-Bashforth 5th-order method . 70

Algorithm 34 ABM6 Adams-Bashforth 6th-order method . 71

Algorithm 35 ABM7 Adams-Bashforth 7th-order method . 71

Algorithm 36 ABM8 Adams-Bashforth 8th-order method . 72

Converting Higher-Order IVPs to 1st-Order IVPs

Algorithm 1

–

Converting a higher-order IVP to a first-order IVP (scalar

dependent variable) . 3

Algorithm 2

–

Converting a higher-order IVP to a first-order IVP (vector

dependent variable) . 6

PART I
Basics of Initial
Value Problems

1
Initial Value Problems

1.1 Definition
There are many classes of problems involving ordinary differential equations (ODEs) and many different ways to solve

them numerically. However, colloquially, IVP solvers1 are tools that can (numerically) solve initial value problems

(IVPs) for ODEs. In these types of problems, we are given a differential equation along with an initial condition. In

the single-variable case,
dy

dt
= f(t, y), x(t0) = x0

Our goal is to solve for y(t). The above equation indicates that the rate of change is y is dependent on (a) the instan-

taneous value of y and (b) the independent variable, t2.
The previous equation represented a 1st-order IVP. However, IVP solvers can are also design to be able to solve

higher-order IVPs. For example, we can express a 2nd-order IVP as

d2y

dt2
= f

(
t, x,

dy

dt

)
, y(t0) = y0,

dy

dt

∣∣∣∣
t=t0

= y′0

For a 1st-order IVP, we know f and y0 and wish to find y(t). For a 2nd-order IVP, we know f , y0, and y′0, and wish

to find y(t). In some (extremely rare) cases, it is possible to solve these problems explicitly. However, even then, it is

often easier to just use a numerical method. Once again, it is vital to note that these numerical methods are applicable

to vector valued IVPs as well. If we consider a vector-valued variable y = (y1, ..., yn)
T , then the 1st and 2nd-order

IVPs become

dy

dt
= f(t,y), y(t0) = y0

d2y

dt2
= f

(
t,y,

dy

dt

)
, y(t0) = y0,

dy

dt

∣∣∣∣
t=t0

= y′
0

1 Sometimes also referred to as “ODE solvers”
2 The independent variable is denoted as t because in most cases IVP solvers are used in situations where time is the independent variable.

1.2 Converting Higher-Order IVPs to First-Order IVPs: The Scalar Case 3

1.2 Converting Higher-Order IVPs to First-Order IVPs: The
Scalar Case

Consider the general form of a 2nd-order IVP. Noting that the second derivative of a variable can be a function of the

independent variable, the variable itself, and the first derivative of the variable, we write (in the general case)

d2z

dt2
= g

(
t, z,

dz

dt

)
,

dz

dt

∣∣∣∣
t=t0

= z′0, z(t0) = z0 (1.1)

Our goal is to solve such IVPs using an IVP solver. However, IVP solvers are only suitable for solving 1st-order

IVPs. The solution to this issue is to define a vector-valued differential equation using a vector, y, to represent the

dependent variable. The general form of such a vector-valued differential equation is

dy

dt
= f(t,y), y(t0) = y0 (1.2)

At first glance, going fromEq. (1.1) to Eq. (1.2) seems like an impossible undertaking. However, the conversion

can be accomplished in three steps, in a rather algorithmic fashion. Thus, we first introduce Algorithm 1 to define the

procedure for anmth-order IVP, and then use this algorithm to show how to convert Eq. (1.1) to Eq. (1.2).

Algorithm 1:
Converting a higher-order IVP to a first-order IVP (scalar dependent
variable).

Given:
•
dmz

dtm
= g

(
t, z,

dz

dt
,
d2z

dt2
, ...,

dm−1z

dtm−1

)
- mth-order ODE

• z0, z
′
0, z

′′
0 , ..., z

(m−1)
0 - initial conditions

Procedure:
1. Define the vector y as the original dependent variable z and its derivatives up to

the (m− 1)th derivative.

y =


y1
y2
y3
...
yn

 =


z

dz/dt
d2z/dt2

...
dm−1z/dtm−1


2. Find the derivative of y.

dy

dt
=


dz/dt
d2z/dt2

d3z/dt3

...
dmz/dtm


3. Note that the original differential equation was defined as dmz/dt2 = g(...).

4 Chapter 1 Initial Value Problems

Thus, we can substitute the function g into the last component of dy/dt.

dy

dt
=



dz/dt
d2z/dt2

d3z/dt3

...

g

(
t, z,

dz

dt
,
d2z

dt2
, ...,

dm−1z

dtm−1

)


4. From step 1, we can see that z = y1, dz/dt = y2, d

2z/dt2 = y3, etc. Make these

substitutions into the RHS of the equation from step 3. This essentially gives us

f(t,y).

dy

dt
= f(t,y) =


y2
y3
y4
...

g (t, y1, y2, y3, ..., yn)


5. At this point, we have the function f(t,y) defining the vector-valued differential

equation. Now, we just need to define its initial conditions. Once again exploiting

the fact that z = y1, dz/dt = y2, d
2z/dt2 = y3, etc., we can write

y0 =


y1,0
y2,0
y3,0
...

yn,0

 =


z0
z′0
z′′0
...

z
(m−1)
0


Return:

• f(t,y) - multivariate, vector-valued function (f : Rm → Rm) defining the

ODE dy/dt = f(t,y)
• y0 ∈ Rm - initial condition

Let’s return to the 2nd-order case and apply Algorithm 1 to write it as a 1st-order IVP. Since z is a scalar

variable, we need y ∈ R2; this is because one component of y will store z, while the other will store its derivative with
respect to t.

y =

[
y1
y2

]
=

[
z

dz/dt

]
Differentiating y,

dy

dt
=

[
dz/dt
d2z/dt2

]
Noting that d2z/dt2 = g(t, z, dz/dt),

dy

dt
=

[
dz/dt

g(t, z, dz/dt)

]
From our definition of y, we can see that z = y1 and dz/dt = y2. Making these substitutions,

dy

dt
=

[
y2

g(t, y1, y2)

]

1.2 Converting Higher-Order IVPs to First-Order IVPs: The Scalar Case 5

Thus, we have

f(t,y) =

[
y2

g(t, y1, y2)

]
Finally, defining y0 using the initial conditions for z and dz/dt,

y0 =

[
z0
z′0

]
(1.3)

For additional understanding, consider Example 1.2.1, which also demonstrates implementation of a vector-

valued differential equation in MATLAB.

Example 1.2.1: Converting a 3rd-order IVP to a 1st-order IVP.

Consider the following 3rd-order IVP:

d3b

dx3
= 25x2b3

d2b

dx2
+ xb, b(x0) = 5,

db

dx

∣∣∣∣
x=x0

= 0,
d2b2

dx

∣∣∣∣
x=x0

= −10

Write this IVP as a 1st-order IVP and implement the resulting vector-valued differential equation in MATLAB.

� SOLUTION

First, let’s define the vector variable:

y =

y1y2
y3

 =

 b
db/dx
d2b/dx2


Differentiating,

dy

dx
=

 db/dx
d2b/dx2

d3b/dx3


Substituting the original ODE into the last element of dy/dx,

dy

dx
=

 db/dx
d2b/dx2

25x2b3(d2b/dx2) + xb


Noting that y1 = b, y2 = db/dx, and y3 = d2b/dx2, we get

dy

dx
=

 y2
y3

25x2y31y3 + xy1


Since, by convention, we write dy/dx = f(x,y), we get

f(x,y) =

 y2
y3

25x2y31y3 + xy1


Assembling the initial conditions into the vector y0 (and recalling that y1 = b, y2 = db/dx, and y3 = d2b/dx2),

y0 =

 5
0
−10


To define the vector-valued differential equation and the corresponding initial condition in MATLAB,

6 Chapter 1 Initial Value Problems

% vector-valued differential equation
f = @(x,y) [y(2);y(3);

25*x^2*y(1)^3*y(3)+x*y(1)];

% initial condition
y0 = [5;

0;
-10];

1.3 Converting Higher-Order IVPs to First-Order IVPs: The
Vector Case

Higher order IVPs are not restricted to scalar variables; in fact, most of the time, the IVPs we deal with our higher-order

IVPs where the dependent variable is a vector. The general form of such an IVP is shown in Eq. (1.4) below, where

we assume that z ∈ Rp.

dmz

dtm
= g

(
t, z,

dz

dt
, ...,

dm−1z

dtm−1

)
, z(t0) = z0,

dz

dt

∣∣∣∣
t=t0

= z′0, ...,
dm−1z

dtm−1

∣∣∣∣
t=t0

= z
(m−1)
0 (1.4)

To convert Eq. (1.4) to a 1st-order IVP, we introduce Algorithm 2, which is essentially identical to Algorithm 1, just

extended to the case of a vector dependent variable.

Algorithm 2:
Converting a higher-order IVP to a first-order IVP (vector dependent
variable).

Given:
•
dmz

dtm
= g

(
t, z,

dz

dt
,
d2z

dt2
, ...,

dm−1z

dtm−1

)
- mth-order ODE

• z0, z
′
0, z

′′
0 , ..., z

(m−1)
0 ∈ Rp - initial conditions

Procedure:
1. Define the vector y as the original dependent variable z and its derivatives up to

the (m− 1)th derivative.

y =


y1:p

y(n+1):2p

y(2n+1):3p

...
y((m−1)n+1):mp

 =


z

dz/dt
d2z/dt2

...
dn−1z/dtn−1



1.3 Converting Higher-Order IVPs to First-Order IVPs: The Vector Case 7

In an expanded form, we write

y =



y1
...
yp

yn+1

...
y2p

y2n+1

...
y3p
...

y(m−1)n+1

...
ymp



=



z1
...
zp

dz1/dt
...

dzp/dt

d2z1/dt
2

...
d2zp/dt

2

...

dmz1/dt
m

...
dmzp/dt

m


2. Find the derivative of y.

dy

dt
=


dz/dt
d2z/dt2

d3z/dt3

...
dmz/dtm

 =



dz1/dt
...

dzp/dt

d2z1/dt
2

...
d2zp/dt

2

d3z1/dt
3

...
d3zp/dt

3

...

dm−1z1/dt
m−1

...
dm−1zp/dt

m−1


3. Note that the original differential equation was defined as dmz/dtm = g(...).

8 Chapter 1 Initial Value Problems

Thus, we can substitute the function g into the last component of dy/dt.

dy

dt
=



dz1/dt
...

dzp/dt

d2z1/dt
2

...
d2zp/dt

2

d3z1/dt
3

...
d3zp/dt

3

...

g

(
t, z,

dz

dt
,
d2z

dt2
, ...,

dm−1z

dtm−1

)


4. From step 1, we can see that z = (y1, ..., yp)

T , dz/dt = (yn+1, ..., y2p)
T ,

d2z/dt2 = (y2n+1, ..., y3p)
T , etc. Make these substitutions into the RHS of the

equation from step 3. This essentially gives us f(t,y).

dy

dt
=



yn+1

...
y2p

y2n+1

...
y3p

y3n+1

...
y4p
...

g

t,

y1...
yp

 ,

yn+1

...
y2p

 ,

y2n+1

...
y3p

 , ...,

y(m−1)n+1

...
ymp





5. At this point, we have the function f(t,y) defining the vector-valued differential

equation. Now, we just need to define its initial conditions.

y0 =


z0
z′0
z′′0
...

z
(m−1)
0


Return:

• f(t,y) - multivariate, vector-valued function (f : Rmp → Rmp) defining the

ODE dy/dt = f(t,y)
• y0 ∈ Rmp - initial condition

1.3 Converting Higher-Order IVPs to First-Order IVPs: The Vector Case 9

Example 1.3.1: Converting a 2nd-order vector IVP to a 1st-order IVP

Consider the following 2nd-order IVP:

d2x

dt2
= (x1 + x2)

dx

dt
+ x

dx1

dt
, x0 =

[
0
0

]
, x′

0 =

[
1
1

]
where x = (x1, x2)

T . Write this IVP as a 1st-order IVP and implement the resulting differential equation in

MATLAB.

� SOLUTION

First, let’s define our new vector variable:

y =

[
y1:2

y3:4

]
=

[
x

dx/dt

]
In an expanded form,

y =


y1
y2
y3
y4

 =


x1

x2

dx1/dt
dx2/dt


Differentiating,

dy

dx
=


dx1/dt
dx2/dt
d2x1/dt

2

d2x2/dt
2


Expanding the original ODE, 

dx2
1

dt2
= (x1 + x2)

dx1

dt
+ x1

dx1

dt

dx2
2

dt2
= (x1 + x2)

dx2

dt
+ x2

dx1

dt

Replacing the last two element of dy/dx with the above equation,

dy

dx
=



dx1/dt
dx2/dt

(x1 + x2)
dx1

dt
+ x1

dx1

dt

(x1 + x2)
dx2

dt
+ x2

dx1

dt


Noting that y1 = x1, y2 = x2, and y3 = dx1/dt, and y4 = dx2/dt, we get

dy

dx
=


y3
y4

(y1 + y2)y3 + y1y3
(y1 + y2)y4 + y2y3


Since, by convention, we write dy/dt = f(t,y), we get

f(t,y) =


y3
y4

(y1 + y2)y3 + y1y3
(y1 + y2)y4 + y2y3



10 Chapter 1 Initial Value Problems

Assembling the initial conditions into the vector y0 (and recalling that y1:2 = x and y3:4 = dx/dt,

y0 =


0
0
1
1


To define the vector-valued differential equation and the corresponding initial condition in MATLAB,

% vector-valued differential equation
f = @(t,y) [y(3);

y(4);
(y(1)+y(2))*y(3)+y(1)*y(3);
(y(1)+y(2))*y(4)+y(2)*y(3)];

% initial condition
y0 = [0;

0;
1;
1];

2
Defining Systems Mathematically

and Computationally

2.1 State Vectors and State Space
In physics and engineering, most differential equations we deal with are second-order or higher. For example, consider

the generic mass-spring-damper system shown in Fig. 2.1. If we assume that x is defined such that x = 0 when the

m

k

b

F (t)

x

Figure 2.1: Mass-spring-damper system.

spring is at equilibrium, then (ignoring gravity) we can draw the free body diagram shown in Fig. 2.2. From Newton’s

m
kx

bẋ
F

Figure 2.2: Free body diagram of mass.

second law,

F − kx− bẋ = mẍ

Solving for ẍ,

ẍ = −
(

b

m

)
ẋ−

(
k

m

)
x+

(
1

m

)
F

If we know the initial conditions x(t0) = x0 and ẋ(t0) = ẋ0, then we have the following 2nd-order IVP:

ẍ = −
(

b

m

)
ẋ−

(
k

m

)
x+

(
1

m

)
F, x(t0) = x0, ẋ(t0) = ẋ0 (2.1)

12 Chapter 2 Defining Systems Mathematically and Computationally

Since IVP solvers are only suitable for solving 1st-order IVPs (as discussed previously), we need to convert

the 2nd-order IVP given by Eq. (2.1) to a 1st-order IVP. In the context of engineering, we do this by defining a state

vector, which fully describes the state of the physical system. Essentially, the vector y in Section 1.3 served as the

state vector. There are two commonly used conventions for denoting a state vector as outlined in Convention 1 below.

Convention 1: State vector nomenclature.

• y – usedwhen defining/discussing IVP solvers, as inmathematics, “y” is typically
used to denote the dependent variable

• x – used in engineering contexts to denote the state of a physical system

The components of the state vector are referred to as state variables. A state variable is just a variable that

helps describe some component of the mathematical state of a physical system. Thus, the state vector is essentially the

set of state variables that fully describes the system.

But what counts as “fully describing” the system? Intuitively, we want the state variables (and thereby the

state vector) to describe enough about the system for us to determine its future behavior in the absence of external

forces acting on the system1. By “future behavior”, we mean its position (i.e. trajectory) and its velocity. In the case of

unforced motion in the mass-spring-damper system above, we only need the mass’s position and velocity at one instant

to completely determine its position and velocity at any time in the future [11, 12]. Therefore, our state variables in

this case are

state variables = x, ẋ

Our state vector (i.e. collection of state variables) is then

y =

[
x
ẋ

]
Note that in this case, we violate Convention 1 and denote our state vector as y. We do this because when we go to

input the math into a computer, it will be easier to do if we don’t have so many x’s floating around.
Now that we’ve decided on our state-vector, we want to rewrite the 2nd-order IVP given by Eq. (2.1) as a

1st-order IVP in terms of the state vector. Mathematically2, the goal is to write

ẏ = f(t,y), y(t0) = y0 (2.2)

To do this, we can use an identical procedure to that taken in Section 1.2. If y = (x, ẋ)
T
is our state vector, then the

derivative of the state vector is ẏ = (ẋ, ẍ)
T
. Therefore, we can write the following system of differential equations,

1 While the force, F , certainly does affect how the mass will move in the future, it does not affect how the mass is moving in this instant (i.e. it

affects the acceleration instantaneously, but the position and velocity cannot change instantaneously). As an example, we can consider two cars

who, at some instant, are exactly side by side traveling at the exact same speed. In one of the cars, the driver is pushing the gas pedal, while in

the other car, the driver has slammed on the brakes. The fact that the drivers are applying different forces to their car has no bearing on the fact

that at the instant considered, the state of the cars are the same; they are both at the same position, going at the same speed. The forces that the

drivers are applying certainly do, however, affect how the car will be moving in the following instant.
2 Since this system is linear, we could also write it as

ẋ = Ax+Bu

where we would find that
ẋ︷︸︸︷[
ẋ
ẍ

]
=

A︷ ︸︸ ︷[
0 1

−k/m −b/m

] x︷︸︸︷[
x
ẋ

]
+

B︷ ︸︸ ︷[
1

m

] u︷︸︸︷[
f
]

In the general case, u is typically a function of x and t, so we could define the function f(t,x) as

f(t,x) = Ax+Bu(t,x)

in order to simulate the system with an IVP solver.

2.1 State Vectors and State Space 13

together with their initial conditions:ẋ = ẋ

ẍ = −
(

b

m

)
ẋ−

(
k

m

)
x+

(
1

m

)
F

,

{
x(t0) = x0

ẋ(t0) = ẋ0

In matrix form, these can be written as

[
ẋ
ẍ

]
=

 ẋ

−
(

b

m

)
ẋ−

(
k

m

)
x+

(
1

m

)
F

 ,

[
x(t0)
ẋ(t0)

]
=

[
x0

ẋ0

]
(2.3)

Since we know y = (x, ẋ)T and ẏ = (ẋ, ẍ)T , we can simply compare Eq. (2.3) to Eq. (2.2) to find that

ẏ = f(t,y) =

 ẋ

−
(

b

m

)
ẋ−

(
k

m

)
x+

(
1

m

)
F

 , y0 =

[
x0

ẋ0

]

Another source of confusion at this point can be the fact that in the equation above, we wrote the left hand side as

f(t,y), but the right hand side is not explicitly a function of y; rather, it is a function of the components (i.e. x and ẋ)
of y. If we wanted to be overly-rigorous, we could distinguish the two as

f(t, x, ẋ) =

 ẋ

−
(

b

m

)
ẋ−

(
k

m

)
x+

(
1

m

)
F

 , f(t,y) =

 yT

[
0
1

]
−
(

b

m

)
yT

[
0
1

]
−
(

k

m

)
yT

[
1
0

]
+

(
1

m

)
F


However, making this distinction is unnecessary in both amathematical sense and a practical sense; when programming

these equations, it is trivial to access an element of a vector – we do not need to use dot products to do this.

This brings us to the topic of actually programming these functions. As with many concepts, there can be a

substantial disconnect between writing these equations down on paper and actually implementing them in a computer.

Consequently, the best way to explain how to do it is to show by example. There are two main approaches we use,

which we outline in Convention 2. Both conventions are used in Example 2.1.1.

Convention 2: Programming a differential equation.

There are two main approaches to programming a differential equation:

1. Using a change of variables.

This is manageable for simple systems (this is the approach we took previously

in Examples 1.2.1 and 1.3.1). We use this method under “SOLUTION” in the

example below.

2. “Unpacking the state vector”, performing calculations, and “assembling the

state vector derivative”.

Results in slightly longer code, but much easier/more intuitive to read; this is the

method we use most often, especially for more complex systems. We use this

method under “ALTERNATE SOLUTION” in the example below.

14 Chapter 2 Defining Systems Mathematically and Computationally

Example 2.1.1: Implementing the mass spring damper IVP in MATLAB.

Recall the 2nd-order IVP (Eq. (2.1)) governing the mass-spring-damper system shown in Fig. 2.1.

ẍ = −
(

b

m

)
ẋ−

(
k

m

)
x+

(
1

m

)
F, x(t0) = x0, ẋ(t0) = ẋ0 ((2.1))

For this example, assume the following values:

b = 5 (N · s)/m, k = 1 N/m, m = 2 kg, x0 = 1 m, ẋ0 = 0 m/s

Additionally, let F (t) be given by
F (t) = cosπt

Implement a vector-valued differential equation f(t,y) and initial condition y0 (as shown below) in MATLAB

that describes the evolution of this system.

ẏ = f(t,y), y(t0) = y0

� SOLUTION

We can begin by defining known quantities and the forcing function.

% parameters
b = 5; % damping constant [N.s/m]
k = 1; % spring constant [N/m]
m = 2; % mass [kg]
x0 = 1; % initial position [m]
xdot0 = 0; % initial velocity [m/s]

% forcing function
F = @(t) cos(pi*t);

From our work before this example, we already found that

y =

[
x
ẋ

]
, f(t,y) =

 ẋ

−
(

b

m

)
ẋ−

(
k

m

)
x+

(
1

m

)
F

 , y0 =

[
x0

ẋ0

]
(2.4)

Writing the initial condition in MATLAB,

% initial condition
y0 = [x0;

xdot0];

Now, we must bridge the gap between the mathematical definition of y and how the computer “sees” y. In the
computer, y is just a 2× 1 array that has the indices 1 and 2. Therefore, what the computer sees is

y =

[
y1
y2

]
(2.5)

If we compare Eqs. (2.4) (which is the mathematical definition of the state vector) and (2.5) (which is the state

vector used by the computer), we can see that

x = y1, ẋ = y2

2.1 State Vectors and State Space 15

This essentially represents a change of variables; we now use y1 to denote x and y2 to denote ẋ. Performing

this change of variables in Eq. (2.4),

f(t,y) =

 y2

−
(

b

m

)
y2 −

(
k

m

)
y1 +

(
1

m

)
F


In MATLAB, we can write

% differential equation
f = @(t,y) [y(2);

-(b/m)*y(2)-(k/m)*y(1)+(1/m)*F(t)];

� ALTERNATE SOLUTION

While the solution above is adequate for simple functions, it is more cumbersome to use for complicated func-

tions. Additionally, it makes the code less “readable” – all the state variables are written as elements of the state

vector, so it is difficult to see what they physically represent. A better solution, especially when dealing with

more complex systems, is to “unpack” the state vector, perform all calculations, and then assemble the state

vector derivative. Again, this is best explained by just showing the solution in MATLAB.

There are multiple things to note, however, when defining the differential equation:

1. We first define a local function f_extra, which must be located at the very end of the script.

2. To be able to later use f_extra in an IVP solver, we assign it the function handle f.
3. We named the local function f_extra because it has some extra input parameters beyond what f will

have (f can only have the input parameters t and y due to how IVP solvers are defined). See Section

2.3.1 for more information on passing extra parameters.

% parameters
b = 5; % damping constant [N.s/m]
k = 1; % spring constant [N/m]
m = 2; % mass [kg]
x0 = 1; % initial position [m]
xdot0 = 0; % initial velocity [m/s]

% forcing function
F = @(t) cos(pi*t);

% initial condition
y0 = [x0;

xdot0];

% assigns function handle to differential equation
f = @(t,y) f_extra(t,y,b,k,m,F);

% defines differential equation
function ydot = f_extra(t,y,b,k,m,F)

% unpacks state vector
x = y(1);
xdot = y(2);

% preallocates state vector derivative

16 Chapter 2 Defining Systems Mathematically and Computationally

ydot = zeros(size(y));

% assembles state vector derivative
ydot(1) = xdot;
ydot(2) = -(b/m)*xdot-(k/m)*x+(1/m)*F(t);

end

2.2 Coupled ODEs
Consider the coupled mass-spring-damper system shown in Fig. 2.3. Using Newton’s second law, one can derive the

m1 m2

k1

b

k2
F (t)

x1 x2

Figure 2.3: Coupled mass-spring-damper system.

following equations of motion for the two blocks:

ẍ1 = −
(
k1 + k2
m1

)
x1 +

(
k2
m1

)
x2 −

(
b

m1

)
ẋ1

ẍ2 =

(
k2
m2

)
x1 −

(
k2
m2

)
x2 + F (t)

ẍ1 and ẍ2 are both 2nd-order ODEs, and they are coupled to one another (x1 and x2 appear in both equations).

Since they are coupled, we cannot solve one without solving the other simultaneously. In the context of IVP solvers,

we will still need to represent the system using a single 1st-order vector-valued ODE. To do this, we can simply define

the state vector for the overall system as

x =


x1

ẋ1

x2

ẋ2


Then the time derivative of the state vector is

ẋ =


ẋ1

ẍ1

ẋ2

ẍ2



2.3 Extra Parameters 17

Since ẋ = f(t,x), we have

ẋ = f(t,x) =



ẋ1

−
(
k1 + k2
m1

)
x1 +

(
k2
m1

)
x2 −

(
b

m1

)
ẋ1

ẋ2(
k2
m2

)
x1 −

(
k2
m2

)
x2 + F (t)



2.3 Extra Parameters
2.3.1 Passing Extra Parameters

Consider the function f(x, y) = −a(x− b)2 − c(y − d)2 where x and y are independent variables, and a, b, c, and d
are constants. In MATLAB, we can program this in two ways:

1. as an anonymous function

2. as aMATLAB function

As an anomymous function, we can program f(x, y) as

f = @(x,y) -a*(x-b)^2-c*(y-d)^2;

In the above function definition, a, b, c, and d must already have been initialized. Whenever the function f(x,y) is

called, it well than use the values of a, b, c, and d at the time f was defined. Consider the snippet of code below:

% function definition
a = 5; b = 5; c = 5; d = 5;
f = @(x,y) -a*(x-b)^2-c*(y-d)^2;

% call function, update "a", then call function again
f(2,2)
a = 20;
f(2,2)

Both calls of f(2,2) will evaluate to the same result because f(2,2) will still be using a = 5 both times. Now,

say that we want to update the values of the constants in f(x,y). We could do the following:

% original function definition
a = 5; b = 5; c = 5; d = 5;
f = @(x,y) -a*(x-b)^2-c*(y-d)^2;

% update values of constants
a = 10; b = 10; c = 10; d = 10;
f = @(x,y) -a*(x-b)^2-c*(y-d)^2;

An alternate way to do this is

% define function where constants can vary as well
f_extra = @(x,y,a,b,c,d) -a*(x-b)^2-c*(y-d)^2;

% define original function by assigning function handle to f_extra
f = @(x,y) f_extra(x,y,5,5,5,5);

% update values of constants
f = @(x,y) f_extra(x,y,10,10,10,10);

The code above demonstrates the concept of passing extra parameters [8]. Typically, our functions will have con-

stants in them who’s values are stored in variables. However, for IVP solvers in particular, we can only pass in

18 Chapter 2 Defining Systems Mathematically and Computationally

functions of the form f(t,y). Therefore, if we want to be able to easily vary the parameter values later, we first

define a function f_extra (where the “extra” denotes that “extra” parameters are being passed), and then assign

it a new function handle.

In many cases, we have really complicated functions that could be calculated in steps across 10+ lines of code.

In these cases, the functions must be defined as MATLAB functions. For the same equation as considered above, we

could write

function f = f_extra(x,y,a,b,c,d)
f = -a*(x-b)^2-c*(y-d)^2;

end

We can assign function handles to MATLAB functions as well, and essentially treat them like anonymous functions

thereafter. Assigning f_extra a function handle just like before (and with the same parameter values),

a = 10; b = 10; c = 10; d = 10;
f = @(x,y) f_extra(x,y,a,b,c,d);

2.3.2 Recovering Extra Parameters

From the block diagrams in Section 3.4, we can see that IVP solvers only output (a) the time vector and (b) a matrix

storing the solution at each time in the time vector. However, oftentimes, the functionswe pass to the IVP solvers will be

very complicated functions within which many other quantities are calculated. As an example, for rocket simulations,

the function defining the differential equation will be calculating the force due to drag at every time step. The drag

force is a function of both the rocket’s position (drag depends on air density, air density decreases with altitude) and

velocity. However, there is no way for the IVP solver to directly output the drag force.

The workaround is to define the differential equation so that it returns more than just the state vector derivative.

An example of how we typically define functions representing differential equations is

f = @(t,y) f_extra(t,y,a);

where

function f = f_extra(t,y,a);
x = 2*a-5;
f = x^2;

end

However, consider the case where we want to recover a variable x that is calculated inside of f_extra. Then we can
instead define f_extra as

function [f,x] = f_extra(t,y,a);
x = 2*a-5;
f = x^2;

end

We can still assign a function handle to f_extra, just like before. When we do so, only the first output parameter

(f) of f_extra will be returned.

At this point, we have all the ingredients we need in order to be able to recover extra parameters. The overall

process is best explained using an example – see Example 2.3.1 below.

Example 2.3.1: Recovering extra parameters from an IVP solution.

Solve the following IVP on the interval [0, 10]:

dy

dt
= xy where x = 2a− 5t, a = 5, y0 = (1, 1)T

Then, plot x(t) over this interval.

2.3 Extra Parameters 19

� SOLUTION

% assign function handle and pass extra parameter
f = @(t,y) f_extra(t,y,5);

% solve IVP
y0 = [1;1];
t0 = 0;
tf = 10;
[t,y] = ode45(f,[t0,tf],y0);

% recover "x" at every time step
x = zeros(size(t));
for i = 1:length(t)

[~,x(i)] = f(t(i),y(i,:)');
end

% plot x vs. t
figure;
plot(t,x,'linewidth',1.5,'color',[0.5490,0.0824,0.0824]);
grid on;
xlabel('t','Interpreter','latex','FontSize',18);
ylabel('x','Interpreter','latex','FontSize',18);

% MATLAB function must be declared at end
function [f,x] = f_extra(t,y,a)

x = 2*a-5*t;
f = x*y;

end

0 1 2 3 4 5 6 7 8 9 10

-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

PART II
IVP Solvers and
Discretization

3
IVP Solvers for Vector-Valued Initial

Value Problems

3.1 The General Solution
Consider the initial value problem

dy

dt
= f(t,y), y(t0) = y0

Solving for y(t),

y(t)− y(t0)︸ ︷︷ ︸
y0

=

ˆ t

t0

f(t,y) dt

y(t) = y0 +

ˆ t

t0

f(t,y) dt (3.1)

3.2 Discretization and Solution Arrays
In many cases, we cannot analytically evaluate the integral in Eq. (3.1) (hence our need for IVP solvers). The solution

is to approximate the result by discretizing time, sample f(t,y) at those discrete points in time, and then assume that

f(t,y) behaves a certain way between the two sample times1. A visual representation of a scalar-valued ODE sampled

at discrete points in time is shown in Fig. 3.1.

Using IVP solvers, we find the solution, y(t), at these discrete points in time, which we call sample times. The

1 An example of a behavior we could assume between consecutive sample times is that f(t, y) = f(tn, yn) ∀ t ∈ [tn, tn+1) (i.e. the ODE is

constant between the two sample times). This results in the Euler method; see Section 5.2.

22 Chapter 3 IVP Solvers for Vector-Valued Initial Value Problems

t

dy

dt
dy

dt
= f(t, y)

t0 t1 tn−1 tn tn+1 tN−1 tN

f0

f1
fn−1

fn
fn+1

fN−1
fN

h

Figure 3.1: Discretization of an ODE in time.

corresponding time vector storing the sample times, t ∈ RN+1, is defined as

t =


t0
t1
t2
...
tN

 =



t0
t0 + h
t0 + 2h

...
t0 + (N − 1)h

tN


(3.2)

The step size or time step between two points in time, h, is defined as

h = tn+1 − tn (3.3)

For fixed-step solvers (what we cover in this text), h is constant.

The solution matrix, [y], stores the solution y(t) at the discrete points in time specified by the time vector.

There are two different forms the solution matrix can be written in, as shown in Eq. (3.4). These different forms are

discussed in more detail in Sections 3.2.1 and 3.2.2.

[y] =


yT
0

yT
1

yT
2
...

yT
N


︸ ︷︷ ︸
row form

=
[
y0 y1 y2 · · · yN

]︸ ︷︷ ︸
column form

(3.4)

3.2.1 Solution Matrix: Row Form

In row form, the nth row of [y] stores yT
n , where yn = y(tn) ∈ Rp is the solution of the IVP at time tn.

[y] =


yT
0

yT
1

yT
2
...

yT
N

 ∈ R(N+1)×p (3.5)

3.3 A Brute Force Solution Method 23

This is the form in which the IVP solver (Algorithm 3) returns the solution to an IVP. This is also the form that

MATLAB’s ODE suite returns the solution to IVPs.

3.2.2 Solution Matrix: Column Form

In column form, the nth column of [y] stores yn, where yn = y(tn) ∈ Rp is the solution of the IVP at time tn.

[y] =
[
y0 y1 y2 · · · yN

]
∈ Rp×(N+1) (3.6)

During the solution process, it is more convenient to work with [y] in column form, as shown in Eq. (3.6).

During most of Algorithm 3, the solution matrix is in column form. Additionally, Algorithm 4 also assumes that the

solution matrix is in this form. However, for the IVP solver to return the solution matrix in the row form defined by

Eq. 3.5, we need to remember to take its transpose at the end of the solution process.

[y]← [y]T

3.3 A Brute Force Solution Method
One of the primary applications of IVP solvers is trajectory simulation. As a first introduction to the numerical solution

to a trajectory, undergraduate courses often start with the fact that (a) velocity, v, is the derivative of position, r, and
(b) acceleration, a, is the derivative of velocity.

v =
dr

dt
, a =

dv

dt

If we know the initial position and velocity (r0 = r(t0) and v0 = v(t0), respectively) at the initial time t0, and if we

know the acceleration as a function of time, position, and acceleration (i.e. a = a(t, r,v)), then to find the position

and velocity at any time t, we must evaluate the following expressions:

v(t) = v(t0) +

ˆ t

t0

a(t, r,v) dt

r(t) = r(t0) +

ˆ t

t0

v(t, r,v) dt

In simple cases, such as when a is a constant or is an integrable function of t, then we can evaluate these integrals

analytically. However, in most cases, a is a very complicated function, and it is impossible or very difficult to solve

these integrals analyically.

A first approach to solving such a problem numerically is discretizing time into very small increments (i.e.

tn+1 = tn+∆t, as illustrated in Figure 3.1), and assuming that the velocity and acceleration remain constant over those

small time intervals. Mathematically, if we know the position, rn = r(tn), velocity, vn = v(tn), and acceleration,

an = a(tn), at the nth sample time, tn, then at the next (i.e. (n+ 1)th) sample time, tn+1, we have

vn+1 = vn +

ˆ tn+1

tn

an dt

rn+1 = rn +

ˆ tn+1

tn

vn dt

Since we have assumed that an and vn are constant over a short interval of time ∆t, and since ∆t = tn+1 − tn,

vn+1 = vn + an∆t

rn+1 = rn + vn∆t

24 Chapter 3 IVP Solvers for Vector-Valued Initial Value Problems

For physical systems, we typically have an expression of the acceleration as a = a(t, r,v) from Newton’s second law

(i.e. it is our equation of motion/dynamics model). Thus, we calculate an using

an = a(tn, rn,vn)

See Example 3.3.1 below for an example of this approach to solving a simple problem involving Newton’s laws. We

refer to this approach as a brute force approach for two main reasons:

1. It uses the simplest and least accurate approximation available (this is actually the Euler method; see Section

5.2).

2. It is problem-specific; that is, as you will see in the code in the example, for every single problem, you’d have

to manually edit some aspects of the “solver”.

Example 3.3.1: Brute force solution to the motion of a car.

Consider a car of mass m = 1500 kg, cross-sectional area A = 2.5 m2, and drag coefficient CD = 0.25 that

starts from rest at x = 0 m. A constant force of Feng = 4500 N is supplied by the engine to move the car. Find

the velocity and acceleration of the car, as well as the drag force acting on the car, when the car is at a position

of x = 300 m. Assume a constant air density of ρ = 1.2 kg/m3.

� SOLUTION

Applying Newton’s Second Law to find the acceleration yields

a =
Feng − FD

m

where the drag force, FD, is given by

FD =
1

2
CDAρv2

Implementing a “brute force” approach in MATLAB to numerically solve for the resulting motion,

% car parameters
m = 1500; % mass [kg]
A = 2.5; % cross-sectional area [m^2]
CD = 0.25; % drag coefficient [-]
F_eng = 4500; % applied force [N]

% IVP parameters
x0 = 0; % initial position [m]
v0 = 0; % initial velocity [m/s]
xf = 300; % final position [m]

% physical parameters
rho = 1.2; % air density [kg/m^3]

% computational parameters
dt = 0.1; % time step [s]

% preallocate arrays
t = zeros(10000,1);
x = zeros(size(t));
v = zeros(size(t));
a = zeros(size(t));

% solves initial value problem
n = 1;

3.4 General Form of an IVP solver 25

while x(n) < xf

% calculates drag force [N]
FD = 0.5*CD*A*rho*v(n)^2;

% calculates acceleration [m/s^2]
a(n) = (F_eng-FD)/m;

% integrates acceleration to find velocity [m/s]
v(n+1) = v(n)+a(n)*dt;

% integrates velocity to find position [m]
x(n+1) = x(n)+v(n)*dt;

% increments loop index
n = n+1;

end

% trims arrays
t = t(1:(n-1));
x = x(1:(n-1));
v = v(1:(n-1));
a = a(1:(n-1));

% velocity and acceleration of car when position is x = 300 m
v300 = v(end);
a300 = a(end);

% prints results
fprintf(" velocity = %.3f m/s\n",v300)
fprintf("acceleration = %.3f m/s^2\n",a300)
fprintf(" drag force = %.3f N\n\n",FD)

The code above produces the following results:

velocity = 40.853 m/s
acceleration = 2.583 m/s^2
drag force = 625.858 N

3.4 General Form of an IVP solver
An IVP solver (where “IVP” stands for “initial value problem”) is a computational function that solves initial value

problems defined using ordinary differential equations. IVP solvers act as a black box; we pass them a very compli-

cated, vector-valued differential equation, an initial condition, an initial time, some termination condition (more on

this later), and a step size, and it magically returns the solution over some interval of time. This basic functionality is

depicted as a block diagram in Fig. 3.2. Figure 3.2 depicts the block diagram of a generic IVP solver. The input and

output parameters of this generic IVP solver are defined in more detail in Tables 3.1 and 3.2. Note that the termination

condition is somewhat ambiguous here, as it depends on what “mode” the IVP solver is operating in. Specifically, there

are two basic “modes” of IVP solvers, discussed in Sections 3.6 and 3.7, that differ in how the solver is terminated:

1. time detection mode – the IVP is solved until some specified final time (see Section 3.6)

26 Chapter 3 IVP Solvers for Vector-Valued Initial Value Problems

IVP Solverf(t,y), y0, t0, [termination condition], h t, [y]

Figure 3.2: IVP solver block diagram.

2. event detection mode – the IVP is solved until some event occurs (see Section 3.7)

Table 3.1: Inputs to an IVP solver.

Variable Name Description

f(t,y) ∈ RN+1 ODE

multivariate, vector-valued function (f : R× Rp → Rp)

defining the ordinary differential equation

dy/dt = f(t,y)

y ∈ Rp initial condition initial condition y0 = y(t0)

[termination condition] termination condition
condition to terminate the IVP solver; see Sections 3.6

and 3.7

t0 ∈ R initial time initial time

h ∈ R step size step size between sample times (tn+1 = tn + h)

Table 3.2: Outputs of an IVP solver.

Variable Name Description

t ∈ RN+1 time vector stores sequence of sample times (see Section 3.2)

[y] ∈ R(N+1)×p solution matrix

Stores the solution y(t) at discrete points in time.

Specifically, the nth row of [y] stores yT
n , where

yn = y(tn) ∈ Rp is the solution of the IVP at time tn
(where time tn is stored in the nth element of t).

3.5 Propagation Functions
In Section 3.4, we discussed solving IVPs over some time span [t0, tf], obtaining the results at intermediate sample

times. To obtain the solutions at these intermediate sample times, we use propagation functions. Specifically, we use

a propagation function to find the solution at the next sample time, given the solution at the current sample time, and

maybe at previous sample times as well. There are two general types of propagation functions; single-step propagation

functions (for single-step methods; see Section 3.5.1), andmultistep propagation functions (for multistep methods;

see Section 3.5.2).

3.5 Propagation Functions 27

3.5.1 Single-Step Methods and One-Step Propagation

Single-step methods (see Chapter 5) require only the solution at the current sample time to find the solution at the next

sample time. The general operation of a single-step propagation function is defined by Eq. (3.7) and illustrated in Fig.

3.3.

yn+1 = g(tn,yn) (3.7)

g(t,y)
single-step propagation function

f(t,y), tn, yn, h yn+1

Figure 3.3: Single-step propagation function.

The IVP Solver Toolbox uses propagation functions to build up the solution to an IVP over a time span. However,

in some cases (such as discretizing a function), it is useful to just return the solution, y, at the very next sample time

(i.e. yn+1 at time tn+1), given the solution at the current sample time (i.e. yn at time tn). We refer to this as one-step

propagation, since the state vector (i.e. the solution) is being propagated forward “one step” in time. Single-step

solvers are ideally suited to serve as “one-step propagators”, since the solution at the subsequent sample time only

depends on the solution at the current sample time.

3.5.2 Multistep Methods

In contrast to single-step methods (which only require the solution at the current sample time to find the solution at

the next sample time), multistep methods (see Chapters 6 and 7) utilize the solutions at previous sample times to

approximate the solution at the next sample time. Specifically, a multistep method of order m will evaluate f(t,y) at
m sample times:

1. f(tn,yn)
2. f(tn−1,yn−1)
3. f(tn−2,yn−2)

...
m. f(tn−m+1,yn−m+1)

Typically, function evaluations are the most expensive computation in an IVP solver. To avoid repeating function

evaluations unnecessarily, we define the matrix Fn ∈ Rp×(m+1) at the nth sample time as

Fn =

 f(tn,yn) f(tn−1,yn−1) f(tn−2,yn−2) · · · f(tn−m+1,yn−m+1) yn

 (3.8)

The first column of F stores f evaluated the current sample time, the next m − 1 columns store the evaluations of f
for the previous m − 1 sample times, and the (m + 1)th column of F stores the solution at the current sample time,

yn. Storing yn as part of Fn is essential for defining propagation functions for multistep methods.

Instead of propagating yn from one sample time to the next, amultistep propagation function propagates Fn

from one sample time to the next. This behavior is defined by Eq. (3.9) and illustrated in Fig. 3.4.

Fn+1 = g(tn,Fn) (3.9)

When defining themultistep propagation functions in Sections 6.3 and 7.4, it will be necessary to refer to specific

columns of F. Since we are using a subscript to denote the sample number, we will use a superscript in parentheses to

denote a specific column.

28 Chapter 3 IVP Solvers for Vector-Valued Initial Value Problems

g(t,F)
multistep propagation function

f(t,y), tn, Fn, h Fn+1

Figure 3.4: Multistep propagation function.

Convention 3: Columns of the F matrix.

The kth column of the F matrix at sample time n is denoted as

F(k)
n

The submatrix consisting of columns k through l of the F matrix at sample time n is

denoted as

F(k:`)
n

3.6 Time Detection Mode
In general, we use IVP solvers in what we refer to as the time detection mode. In these cases, we are given an initial

time, t0, and wish to solve the IVP until some final time, tf . The reason we refer to this as the time detection mode is

that the algorithm will continue solving the IVP until it detects that it has reached the final time, tf . A block diagram

of an IVP solver in the time detection mode is shown in Fig. 3.5.

IVP Solver

time detection mode
f(t,y), y0, t0, tf , h t, [y]

Figure 3.5: IVP solver block diagram (time detection mode).

Recall from Eq. (3.4) that the IVP solver should produce a time vector t ∈ RN+1, where the first element of t
is equal to t0. In this case, for the time detection mode, we also want the last element of t to be equal to the specified
final time, tf (i.e. tN = tf). However, we also specify the step size, h (see Section 3.2). This presents an issue because

tf −t0 may not be an exact multiple of h. If we want to solve the IVP until tf , we need to choose the number of sample

times N + 1 such that the time at the last sample time is greater than or equal to tf . To do this, we simply use the

ceiling function (i.e. rounding up).

N =

⌈
tf − t0

h

⌉
(3.10)

Thus, the last element of t is

tN = t0 +Nh (3.11)

The issue now is that tN 6= tf (and consequently yN 6= y(tf)). To solve this issue, in the last step of an IVP

solver algorithm, we can use linear interpolation to estimate yf = y(tf).

yf = yN−1 +

[
yN − yN−1

tN − tN−1

]
(tf − tN−1) (3.12)

Finally, we replace the last row of [y] with yT
f .

3.7 Event Detection Mode 29

[y] =


yT
0

yT
1

yT
2
...

yT
N


replacing last row with the yT

f−−−−−−−−−−−−−−−−→
obtained via linear interpolation

[y] =


yT
0

yT
1

yT
2
...
yT
f


For the overall IVP solver algorithm (Algorithm 3 in Section 3.9), we do not directly implement a time detection

mode. Rather, we formulate a event function to terminate integration once the final time is reached, in effect casting it

into event detection mode (see Section 3.7). This “conversion” is detailed in Section 3.8.

3.6.1 Integrating Backwards in Time

In some cases, the final time, tf , may be less than the initial time, t0. For example, this is the case when solving the

continuous-time Riccati differential equation. In these cases, we need to be given the final condition yf = y(tf).
However, this is still the same problem as solving an IVP; we are essentially solving the IVP backward in time, and in

our IVP solvers, the final condition will be substituted for the initial condition. In practice, our IVP solver (Algorithm

3) checks to see if tf is less than t0, and if so, it switches the sign on the step size, h (i.e. it makes it negative).

h← −h

We can then solve and IVP using Algorithm 3 as

[t, [y]] = solve_ivp(f , t0, tf ,yf , h)

3.7 Event Detection Mode
To motivate the need for an event detection mode, consider a satellite slowly deorbiting due to atmospheric drag. We

want to keep solving for its motion until it impacts the Earth. In the time detection mode, we specified a final time until

which we wished to keep solving the IVP. However, in this case, we don’t know ahead of time when the satellite will

impact the Earth. We could make some guesses for tf , but either we underestimate it and the satellite never impacts the

Earth before the solver terminates, or we overestimate it and waste time and computational effort calculating motion

that (a) we don’t need to and (b) doesn’t make sense (we would essentially be simulating the trajectory of the satellite

as if the Earth isn’t there).

In event detection mode, an IVP solver terminates the solver at the occurrence of an event rather than at a

certain time. Instead of passing a final time tf to the IVP solver, we pass it an event function E(t,y).

IVP Solver

event detection mode
f(t,y), y0, t0, E(t,y), h t, [y]

Figure 3.6: IVP solver block diagram (event detection mode).

Based on the time, t, and/or the current value of the state vector, y, the event function E(t,y) determines

whether the solver should continue its solution process or if the solver should be terminated. Therefore, the event

function is evaluated at each and every iteration of the IVP solver. Below, we first introduce a more mathematical

definition of an event function, to keep in line with our practice thus far of introducing everything from a mathematical

standpoint.

The event function is defined in a piecewise manner, where it will evaluate to some value while the IVP solver

should continue integrating. However, at some point, the event function will switch to a different value, signaling to

the IVP solver that it should be terminated. Specifically, the event function returns 1 while the condition is satisfied,

and 0 after it is no longer satisfied.

30 Chapter 3 IVP Solvers for Vector-Valued Initial Value Problems

Convention 4: Mathematical definition of the event function.

An event function E(t,y) (in a mathematical setting) is defined such that it returns 1
until the event (which defines the point at which the solver should be terminated) occurs,

after which it will return 0.

E(t,y) =

{
1, event has not occurred; continue integration

0, event has occurred; terminate integration

Thus, while E(t,y) = 1, the solver should continue integrating to find the solution.

In a computational setting, we have the event function E(t,y), which returns true if integration should continue

and false if it should be terminated.

Convention 5: Computational definition of the event function.

An event function E(t,y) (in a computational setting) is defined such that it returns

true until the event (which defines the point at which the solver should be terminated)

occurs, after which it will return false.

Thus, while E(t,y) = true, the solver should continue integrating to find the solu-
tion.

In MATLAB, the integer 1 can be used interchangeably with the logical true. Simi-

larly, the integer 0 can be used interchangeably with the logical false.

Example 3.7.1: Defining an event function.

Implement an event functionE(t,y) inMATLAB that can be used to terminate an IVP solver when y2 is greater
than 300 and y5 is negative (these two conditions should be satisfied simultaneously for the solver to terminate).

� SOLUTION

We can write the event function in a single line as an anonymous function.

C = @(t,y) ~((y(2) > 300) && (y(5) < 0));

� ALTERNATE SOLUTION

Alternatively, we can use a MATLAB function with an if/else structure, and then assign a function handle to

the MATLAB function. While in this case it is (a) not as efficient and (b) unnecessary to do this, for more

complicated event functions this may be necessary.

% assign function handle
C = @(t,y) condition(t,y);

% MATLAB functions must be at end of script

3.8 Converting Time Detection Mode to Event Detection Mode 31

function C = condition(t,y)
if (y(2) > 300) && (y(5) < 0)

C = false;
else

C = true;
end

end

� ALTERNATE SOLUTION

There exists yet another alternate solution, which is identical to the previous solution, but uses 1 instead of

true and 0 instead of false false (since these values are interchangeable in MATLAB).

% assign function handle
C = @(t,y) condition(t,y);

% MATLAB functions must be at end of script
function C = condition(t,y)

if (y(2) > 300) && (y(5) < 0)
C = 0;

else
C = 1;

end
end

Note that in this example, we never used the time variable. However, in some cases we will need to, and by

convention, we must still include it in our function definition.

3.8 Converting TimeDetectionMode to EventDetectionMode
In the IVP Solver Toolbox, we use a single algorithm (Algorithm 3) to solve IVPs. While we want it to be able to

operate in both time detection and event detection modes, to simplify the code, it is useful to “convert” a time detection

problem into an event detection problem. Recall that an event function, E(t,y), is a function of time; thus, we can use

the event function to check whether the time has reached a certain time. Therefore, we can use an event function to

terminate the solution routine once the final time has been reached. This particular event function can be written as

E(t,y) =

{
1, t ≤ tf

0, t > tf

In a computational setting, this can be written in a single line as

E(t,y) = (t0 <= tf)

However, we must also account for the case where we are integrating backwards in time. In that case, we have

that tf < t0. The event function then becomes

E(t,y) =


1, t ≤ tf and t0 < tf

0, t > tf and t0 < tf

1, t ≥ tf and t0 > tf

0, t < tf and t0 > tf

(3.13)

32 Chapter 3 IVP Solvers for Vector-Valued Initial Value Problems

In a computational setting, this can be written as

if tf > t0

E(t,y) = (t <= tf)

else

E(t,y) = (t >= tf)

end

(3.14)

3.8.1 Premature Termination Due to Numerical Issues

Due to numerical issues, in some cases this method will only solve for the solution up until tf − h. For example, let’s

consider the case where our step size is h = 0.001 and the final time is tf = 10. The time vector that we want our

solution to have is

t =


...

9.998
9.999
10.000


However, due to numerical errors, the time vector we get might be

t =

 ...
9.9980000000000000001
9.9990000000000000001


Essentially, we never reach the final time; we refer to this as premature termination. This occurs because when the

iteration with t = 9.9990000000000000001 has finished, the solver will attempt an iteration at t + h, which in this

case is t = 10.0000000000000000001. However, for t = 10.0000000000000000001, the event function will return

false, and the desired final iteration will never be executed.

To fix this issue, we can subtract h from the left hand side of the inequalities defining the event function.

The side effect of this is in some cases, we will now have two solutions corresponding to essentially the same time.

Numerically, they will be different, but ever so slightly (on the order of 10−15-10−16). In practice, we can set a

threshold, and if the difference between the final two times is within that threshold, we know one of the solutions is

redundant. We could delete either of these redundant solutions. However, when a final time is specified, we will be

interpolating/extrapolating for the solution at that final time, in a manner identical to that discussed in Section 3.6.

Therefore, since the last solution in that case will be at the exact final time, we delete the penultimate solution.

Summary

In summary, we update the event function to

if tf-h > t0

E(t,y) = (t-h <= tf)

else

E(t,y) = (t-h >= tf)

end

If the times at the final two iterations are within 10−10 of each other, i.e. if

|tN − tN−1| < 10−10

then delete the penultimate element of t and the penultimate column of [y] (while [y] is still in the column form

presented in Section 3.2.2).

3.9 IVP Solver Algorithm 33

3.8.2 Integrating Backwards in Time

In event detection mode, we do not specify a final time, so the IVP solver cannot determine on its own if it needs

to solve the IVP backwards in time. Nonetheless, we can still solve IVPs backwards in time using Algorithm 3 by

manually specifying a negative step size.

[t, [y]] = solve_ivp(f , t0, C,yf ,−h)

3.9 IVP Solver Algorithm

Convention 6: Indexing the time vector and solution matrix.

The nth element of the time vector is denoted

tn

The subvector corresponding to elements k through ` of the time vector is denoted

tk:`

The nth column of the solution matrix is denoted

[y]:,n

The submatrix corresponding to columns k through ` of the solution matrix is denoted

[y]:,k:`

Algorithm 3: solve_ivp
Fixed-step IVP solvers for solving vector-valued initial value prob-
lems.

Given:
• f(t,y) - multivariate, vector-valued function defining the

vector-valued ODE, dy/dt = f(t,y) (f : R× Rp → Rp)

• t0 ∈ R - initial time

• tf ∈ R or E(t,y) - final time or event function (E : R× Rp → B)
• y0 ∈ Rp - initial condition

• h ∈ R - step size

• method - (OPTIONAL) integration method (one of the methods from

Chapters 5–7)

Procedure:
1. Determine if inputs correspond to time detection mode or event detection mode.

If the problem is specified as a time detection problem, convert it to an event

detection problem.

if tf is input (time detection mode)

34 Chapter 3 IVP Solvers for Vector-Valued Initial Value Problems

(a) Make the step size negative if t0 > tf (integrating backward in

time).

if t0 > tf
h = −h

end

(b) Define the event function to convert time detection problem to

event detection problem.

if t0 > tf

E(t,y) =

{
1, t− h ≤ tf

0, t− h > tf

else

E(t,y) =

{
1, t− h ≥ tf

0, t− h < tf

end

(c) Indicate that the final time is known.

final_time_known = true

else

Indicate that the final time is unknown (the problem has been specified

in event detection mode).

final_time_known = false
end

2. Default the integration method to RK4 if it is not input.

if (method not input)

method = 'RK4'
end

3. If method specifies a single-step method, define the propagation function as

g(t,y) = RKX(f(t,y), t,y, h)

Note that RKX refers to any of the algorithms presented in Section 5.7.

4. If method specifies a multistep predictor method, define the propagation func-

tion as

g(t,F) = ABX(f(t,F), t,y, h)

Note that ABX refers to any of the algorithms presented in Section 6.3.

5. If method specifies a multistep predictor-corrector method, define the propaga-

tion function as

g(t,F) = ABMX(f(t,F), t,y, h)

Note that ABMX refers to any of the algorithms presented in Section 7.4.

3.9 IVP Solver Algorithm 35

6. Keep track of whether we are using a single-step or multistep method.

if method specifies a single-step method

single_step = true

else

single_step = false
end

7. If using a multistep method, determine its order,m.

if !(single_step)
Store the order of the multistep method specified by method asm.

end

8. Determine the state dimension (p) given that y0 ∈ Rp.

9. Preallocate the time vector, t ∈ R10000, and the solution matrix,Y ∈ R10000×p.

t = 010000×1

[y] = 0p×10000

10. Store the initial conditions in t and [y].

t1 = t0

[y]1:p,1 = y0

11. Solve the IVP.

if single_step

n = 1

while C(tn, [y]:,n)

(a) Expand t and [y] if needed (Algorithm 4).

if (n+ 1) > length(t)

[t, [y]] =

expand_ivp_arrays(t, [y])
end

(b) Propagate state vector to next sample time.

[y]:,n+1 = g(tn, [y]:,n)

(c) Increment time and loop index.

tn+1 = tn + h

n = n+ 1

end

else

36 Chapter 3 IVP Solvers for Vector-Valued Initial Value Problems

(a) Populate the firstm+ 1 elements of the time vector.

t1:(m+1) =



t0
t0 + h
t0 + 2h

...
t0 + (m− 1)h

t0 +mh


(b) Propagate state vector using RK4 (Algorithm 20) for first m

sample times.

for n = 1 tom

[y]:,n+1 = RK4(f , tn, [y]:,n, h)
end

(c) Initialize the F matrix (stores function evaluations for first m
sample times in firstm columns, state vector at (m+1)th sam-

ple time in (m+ 1)th column).

Fn =

 f(t1, [y]:,1) · · · f(tm, [y]:,m) [y]:,m+1


(d) State vector propagation while condition is satisfied.

n = m+ 1

while C(tn, [y]:,n)

i. Expand t and [y] if needed (Algorithm 4).

if (n+ 1) > length(t)
[t, [y]] =

expand_ivp_arrays(t, [y])

end

ii. UpdatesFmatrix (propagates to next sample

time).

F = g(tn,F)

iii. Extract the state vector at the next sample

time and store it in the solution matrix.

[y]:,n+1 = F(m+1)

iv. Increment time and loop index.

tn+1 = tn + h

n = n+ 1

end

3.9 IVP Solver Algorithm 37

end

12. Trim arrays.

[y] = [y]:,1:n

t = t1:n

13. Determine the number of subintervals (N) given that t ∈ RN+1.

14. Linearly interpolate to find solution at desired final time (if known).

if final_time_known
(a) Linearly interpolate to find the solution at tf .

[y]:,N+1 = [y]N +

[
[y]N+1 − [y]N
tN+1 − tN

]
(tf − tN)

(b) Replace last element of t with tf .

tN+1 = tf
end

15. Delete the penultimate solution if it corresponds to (almost exactly) the same time

as the last solution.

if |tN+1 − tN | < 10−10

Delete the penultimate element of t and the penultimate column of

[y].

end

16. Transpose solution matrix so it is returned in “standard form”.

[y] = [y]T

Return:
• t ∈ RN+1 - time vector

• [y] ∈ R(N+1)×p - solution matrix

Note:
• The nth row of [y] stores the transpose of the state vector (i.e. the solution)
corresponding to the nth time in t. This convention is chosen to match the

convention used by MATLAB’s ODE suite.

3.9.1 Starting Multistep Solvers

Recall the definition of the F matrix (repeated below) from Eq. (3.8) in Section 3.5.2.

Fn =

 f(tn,yn) f(tn−1,yn−1) f(tn−2,yn−2) · · · f(tn−m+1,yn−m+1) yn


From the definition of F, we can immediately notice that we need the solutions at m sample times to populate F.
Therefore, we need to use a single-step solver for the first m iterations of a multistep solver (i.e. multistep methods

38 Chapter 3 IVP Solvers for Vector-Valued Initial Value Problems

are not self-starting) [6, pp. 133-134]. In Algorithm 3 (which is implemented in the IVP Solver Toolbox), the RK4

integrator (see Algorithm 20) is used for the firstm iterations.

3.9.2 Expanding Solution Arrays

The general IVP solver outlined in Algorithm 3 operates in event detection mode, which means it does not know ahead

of time how big the time vector and solution matrix need to be. By default, the arrays to store these quantities are

initialized so that they can store results for 10,000 sample times. However, sometimes we will need to increase the

size of these arrays. This is done by initializing new arrays that have twice the size of the previous arrays, and copying

the results from the old arrays into the new arrays. This procedure is formalized in Algorithm 4.

Algorithm 4: expand_ivp_arrays
Expands the arrays storing the IVP solution.

Given:
• t ∈ RN+1 - time vector

• [y] ∈ Rp×(N+1) - solution matrix

Procedure:
1. Determine the number of subintervals, given that t ∈ RN+1.

2. Determine the state dimension, given that [y] ∈ Rp×(N+1).

3. Expand the time vector.

tnew =

[
t

0N+1

]
4. Expand the solution matrix.

[y]new =
[
[y] 0p×(N+1)

]
Return:

• tnew ∈ R2(N+1) - expanded time vector

• [y]new ∈ Rp×2(N+1) - expanded solution matrix

3.9.3 0- vs. 1-Based Indexing

The time vector, t, is defined using 0-based indexing (i.e. its first element has index 0 and stores t0). Similarly, the

solution matrix, [y], is also defined using 0-based indexing (i.e. its first row has index 0 and stores yT
0).

However, MATLAB uses 1-based indexing. Thus, Algorithm 3 is written using 1-based indexing, which can

get a little confusing; for example, element t5 of the time vector, t, stores time t4.

4
Matrix-Valued Initial Value Problems

4.1 Definition
Until now, we have considered vector-valued ODEs of the form

dy

dt
= f(t,y)

where y ∈ Rp is a vector and where f : R× Rp → Rp. However, differential equations of the form

dM

dt
= F(t,M)

are also common, whereM ∈ Rp×r is a matrix and where F : R× Rp×r → Rp×r is a matrix-valued ODE.

For vector-valued ODEs, we referred to y as the state vector. In the context of matrix-valued ODEs, we refer

toM as the state matrix1.

4.2 Transforming a Matrix-Valued IVP into a Vector-Valued
IVP

Consider writing the matrixM ∈ Rp×r in terms of its column vectors:

M =

 | |
m1 · · · mr

| |

 (4.1)

We know that
dM

dt
= F(t,M)

| |
dm1

dt
· · · dmr

dt
| |

 = F

t,

 | |
m1 · · · mr

| |



1 Not to be confused with the matrix A in the dynamics equation ẋ = Ax + Bu, which is also often called the state matrix (in the context of

linear systems and control theory).

40 Chapter 4 Matrix-Valued Initial Value Problems

where F : R× Rp×r → Rp×r.

Our goal is to write the matrix-valued ODE, F, as a vector-valued ODE, f , where

dy

dt
= f(t,y)

Let’s imagine stacking all the column vectors of M on top of each other. Then our goal becomes to write a function

of the form dm1/dt
...

dmr/dt

 = f

t,

m1

...
mr


 (4.2)

Since the matrix M has pr entries, stacking all the column vectors of M on top of one another will produce a vector

of length pr. Thus, we have f : R× Rpr → Rpr.

In an IVP solver setting, our vector-valued function f should have the inputs t and y ∈ Rpr, where

y =

m1

...
mr

 (4.3)

It follows that essentially, given y ∈ Rpr, we construct M ∈ Rp×r, evaluate the matrix-valued ODE F to find

dM/dt ∈ Rp×r, and then construct dy/dt ∈ Rpr from dM/dt. We formalize this procedure for defining a vector-

valued ODE f(t,y) in terms of a matrix-valued ODE F(t,M) as Algorithm 6. Note that Algorithm 6 relies on a

“helper” algorithm, Algorithm 5.

Algorithm 5: state_vector_derivative
Finds the state vector derivative given a matrix-valued ODE.

Given:
• F(t,M) - multivariate, matrix-valued function defining the matrix-valued

ODE, dM/dt = F(t,M) (F : R× Rp×r → Rp×r)

• t ∈ R - current time

• y ∈ Rpr - current state vector, where y is a vector formed by stacking the

column vectors ofM on top of one another

• p ∈ R - number of rows ofM

Procedure:
1. Determine the product pr, given that y ∈ Rpr.

2. Determine r.

r =
pr

p

3. ObtainM ∈ Rp×r from y ∈ Rpr.

y =

m1

...
mr

 → M =

 | |
m1 · · · mr

| |


This can be done in MATLAB using the reshape function:

M = reshape(y, [p, r])

4.2 Transforming a Matrix-Valued IVP into a Vector-Valued IVP 41

4. Evaluate the matrix-valued ODE.

dM

dt
= F(t,M)

5. Obtain dy/dt ∈ Rpr from dM/dt ∈ Rp×r.

dM

dt
=


| |

dm1

dt
· · · dmr

dt
| |

 → dy

dt
=

dm1/dt
...

dmr/dt


This can be done in MATLAB as

dy

dt
=

dM

dt
(:)

Return:
•
dy

dt
∈ Rpr - state vector derivative

Algorithm 6: mat2vec_ODE
Transforms a matrix-valued ODE into a vector-valued ODE.

Given:
• F(t,M) - multivariate, matrix-valued function defining the matrix-valued

ODE, dM/dt = F(t,M) (F : R× Rp×r → Rp×r)

• p ∈ R - number of rows ofM

Procedure:
Create a function defining the corresponding vector-valued ODE utilizing Algorithm 5.

f(t,y) = state_vector_derivative(F, t,y, p)

Return:
• f(t,y) - multivariate, vector-valued function defining the corresponding

vector-valued ODE, dy/dt = f(t,y) (f : R× Rpr → Rpr)

Similarly, given an IVP involving a matrix-valued ODE, the associated initial condition will also be a matrix:

M(t0) = M0 ∈ Rp×r

Algorithm 6 essentially defines f(t,y) as a calculation procedure. To obtain the associated vector initial condition y0

for use in an IVP solver, we can simply note that

M0 =

 | |
m1,0 · · · mr,0

| |

 → y0 =

m1,0

...
mr,0


Defining this step as Algorithm 7,

42 Chapter 4 Matrix-Valued Initial Value Problems

Algorithm 7: mat2vec_IC
Transforms the initial condition for amatrix-valued IVP into the initial
condition for its corresponding vector-valued IVP.

Given:
• M0 ∈ Rp×r - initial condition for matrix-valued IVP

Procedure:
Obtain y0 ∈ Rpr fromM ∈ Rp×r.

M0 =

 | |
m1,0 · · · mr,0

| |

 → y0 =

m1,0

...
mr,0


This can be done in MATLAB as

y0 = M0(:)

Return:
• y0 ∈ Rpr - initial condition for corresponding vector-valued IVP

Finally, if we are solving the IVP in event detection mode, then we will have a event function2 E(t,M) (where
E : R × Rp×r → B) that we must also transform to be compatible with the corresponding vector-valued IVP. This

can be done in an almost identical way to how we transformed F(t,M) to f(t,y); see Algorithm 9 below. Note that

Algorithm 9 also depends on a helper algorithm, Algorithm 8.

Algorithm 8: vector_event_function
Evaluates the event function for a matrix-valued IVP given the cur-
rent time and corresponding state vector.

Given:
• Cm(t,M) - event function for matrix-valued IVP (Cm : R× Rp×r → B)
• t ∈ R - current time

• y ∈ Rpr - current state vector, where y is a vector formed by stacking the

column vectors ofM on top of one another

• p ∈ R - number of rows ofM

Procedure:
1. Determine the product pr, given that y ∈ Rpr.

2. Determine r.

r =
pr

p

2 See Section 3.7 for a discussion of event functions.

4.3 Obtaining the Matrix Results 43

3. ObtainM ∈ Rp×r from y ∈ Rpr.

y =

m1

...
mr

 → M =

 | |
m1 · · · mr

| |


This can be done in MATLAB using the reshape function:

M = reshape(y, [p, r])

4. Evaluate the event function.

C = Cm(t,M)

Return:
• C ∈ B - evaluation of event function

Algorithm 9: mat2vec_E
Transforms the event function for amatrix-valued IVP into the event
function for its corresponding vector-valued IVP.

Given:
• Cm(t,M) - event function for matrix-valued IVP (Cm : R× Rp×r → B)
• p ∈ R - number of rows ofM

Procedure:
Create a function defining the event function for the corresponding vector-valued IVP

using Algorithm 8.

Cv(t,y) = vector_event_function(Cm, t,y, p)

Return:
• Cv(t,y) - event function (Cv : R× Rpr → Rpr) for corresponding

vector-valued IVP

4.3 Obtaining the Matrix Results
mat2vec_ODE and mat2vec_IC (Algorithms 6 and 7, respectively) from the previous section essentially help us

define the IVP
dy

dt
= f(t,y), y(t0) = y0

Running an IVP solver on this IVP will give us the solution matrix [y] ∈ R(N+1)×pr. The nth row of [y] stores yT
n ,

where yn = y(tn) ∈ Rpr is the solution of the IVP at time tn. We want the solution array [M] ∈ Rp×r×(N+1), where

44 Chapter 4 Matrix-Valued Initial Value Problems

the nth page3 of [M] stores the solution,M(tn), at time tn to the IVP

dM

dt
= F(t,M), M(t0) = M0

To obtain [M], we can use Algorithm 10.

Algorithm 10: vec2mat_sol
Transforms the solution matrix for a vector-valued IVP into the so-
lution array for the corresponding matrix-valued IVP.

Given:
• [y] ∈ R(N+1)×pr - solution matrix (the nth row of [y] stores yT

n , where

yn ∈ Rpr is the solution at t = tn)
• p ∈ R - number of rows ofM

Procedure:
1. Determine the product pr and the scalar N , given that [y] ∈ R(N+1)×pr.

2. Determine r.

r =
pr

p

3. Preallocate the solution array [M] ∈ Rp×r×(N+1).

[M] = 0p×r×(N+1)

4. Populate the solution array.

for n = 1 to N + 1

([M])1:p,1:r,n = reshape([y]n,1:pr, [p, q])
end

Return:
• [M] ∈ Rp×r×(N+1) - solution array (nth page of [M] stores the solution,

M(tn) = Mn, at time tn)

Note:
• M ∈ Rp×r

• y ∈ Rpr

• t ∈ RN+1

• The nth page of [M] stores the state matrix (i.e. the solution) corresponding to the

nth time in t.

3 See [7] for the definition of a page of an array.

4.4 One-Step Propagation for Matrix-Valued ODEs 45

4.4 One-Step Propagation for Matrix-Valued ODEs
Recall (from Section 3.5.1) that the single-step methods (algorithms are summarized in Section 5.7) are ideally suited

for use in “one-step propagation”. The documentation of the IVP Solver Toolbox functions corresponding to these

algorithms is written specifically for the case of vector-valued ODEs. However, the exact same functions can be used

for matrix-valued ODEs, since the functions make no assumptions regarding the dimensions of the inputs.

4.5 IVP Solver Algorithm for Matrix-Valued IVPs
To solve a matrix-valued IVP, we can first transform to a vector-valued IVP using Algorithms 6 and 7 from Section

4.2, solving the corresponding vector-valued IVP using Algorithm 3 from Section 3.9, and finally transforming the

solution back to a matrix-valued form using Algorithm 10 from Section 4.3. This general procedure is formalized as

Algorithm 11 below.

Algorithm 11: solve_ivp_matrix
Fixed-step IVP solvers for solving matrix-valued initial value prob-
lems

Given:
• F(t,M) - multivariate, matrix-valued function defining the

matrix-valued ODE, dM/dt = F(t,M)
(F : R× Rp×r → Rp×r)

• t0 ∈ R - initial time

• tf ∈ R or E(t,M) - final time or event function (E : R× Rp×r → B)
• M0 ∈ Rp×r - initial condition

• h ∈ R - step size

• method - (OPTIONAL) integration method (one of the methods from

Chapters 5–7)

Procedure:
1. Determine p given thatM0 ∈ Rp×r.

2. Convert the matrix-valued ODE to a vector-valued ODE (Algorithm 6).

f = mat2vec_ODE(F, p)

3. Convert the initial condition for the matrix-valued IVP into the initial condition

for the corresponding matrix-valued IVP (Algorithm 7).

y0 = mat2vec_IC(M0)

4. Convert the event function for the matrix-valued IVP into the event function for

its corresponding vector-valued IVP (Algorithm 9).

if (event function given)

C = mat2vec_E(C, p)
end

5. Solve the corresponding vector-valued IVP (Algorithm 3).

[t, [y]] = solve_ivp(f , t0, tf or C,y0, h,method)

46 Chapter 4 Matrix-Valued Initial Value Problems

6. Transform the solution matrix for the vector-valued IVP into the solution array

for the matrix-valued IVP (Algorithm 10).

[M] = vec2mat_sol([y], p)

Return:
• t ∈ RN+1 - time vector

• [M] ∈ R(N+1)×p - solution array

Note:
• If p is not input, it is assumed that the state matrix (M) is a square matrix.

• The nth page of [M] stores the state matrix (i.e. the solution) corresponding to the

nth time in t.

PART III
Fixed-Step

Integration Methods

5
Explicit Runga-Kutta (Single-Step)

Methods

5.1 General Form of the Explicit Runge-Kutta Method
In general, an s-stage Runge-Kutta method is defined as

yn+1 = yn + h

s∑
i=1

biki (5.1)

For explicit Runge-Kutta methods,

k1 = f(tn,yi)

k2 = f(tn + c2h,yi + h(a21k1))

k3 = f(tn + c3h,yi + h(a31k1 + a32k2))

...

ki = f

tn + cih,yn + h

i−1∑
j=1

aijkj


...

ks = f

tn + csh,yn + h

s−1∑
j=1

aijkj



(5.2)

The order,m, of a Runge-Kutta method is not necessarily equal to the number of stages.

p 6= s (in general)

However, for the explicit Runge-Kutta methods summarized in this document, we will

in fact have that

p = s (for the RK methods summarized in this document)

5.2 Euler Method 49

Note that
yn,yn+1,ki ∈ Rp

h, aij , bi, ci ∈ R
For a given method, the coefficients aij , bi, and ci are often defined using a Butcher tableau:

0
c2 a21
c3 a31 a32
...

...
...

. . .

cs as1 as2 . . . as,s−1

b1 b2 . . . bs−1 bs

We refer to Eq. (5.1) as the propagation equation, since it propagates the state vector y from one sample time

to the next (i.e. from time tn to time tn+1). The tableau2eqns1 function in the IVP Solver Toolbox can be used

to generate the propagation equation, as well as all the k vector coefficients. The input to this function is a matrix

T ∈ R(s+1)×(s+1) storing the Butcher tableau.

T =



0 0 0 0 · · · 0
c2 a21 0 0 · · · 0
c3 a31 a32 0 · · · 0
...

...
...

. . .
. . .

...
cs as1 as2 · · · as,s−1 0
0 b1 b2 · · · bs−1 bs


tableau2eqns first extracts the Runge-Kutta matrix A ∈ Rs×s, the weight vector b ∈ R1×s, and the node

vector c ∈ Rs [5, 9].

A =

a11 · · · a1s
...

. . .
...

as1 · · · ass

 =


0 0 0 · · · 0
a21 0 0 · · · 0
a31 a32 0 · · · 0
...

...
. . .

. . .
...

as1 as2 · · · as,s−1 0


b =

[
b1 · · · bs

]

c =


c1
c2
...
cs

 =


0
c2
...
cs


A list of the Butcher tableaus used to generate the equations in Sections 5.2-5.5 can be

found in Section 5.6.

5.2 Euler Method
Consider the initial value problem

dy

dt
= f(t,y), y(t0) = y0

1 https://tamaskis.github.io/IVP_Solver_Toolbox-MATLAB/tableau2eqns_doc.html

https://tamaskis.github.io/IVP_Solver_Toolbox-MATLAB/tableau2eqns_doc.html

50 Chapter 5 Explicit Runga-Kutta (Single-Step) Methods

Recall from Eq. (3.1) that the solution of this IVP is

y(t) = y0 +

ˆ t

t0

f(t,y) dt

As discussed in Section 3.2, in general, it is either very difficult or mathematical impossible to evaluate the integral

above in closed form. However, note that we can pick any point in time to be point t0. Therefore, given yn = y(tn)
at sample time tn, we can find yn+1 = y(tn+1) at the next sample time as

yn+1 = yn +

ˆ tn1

tn

f(tn,y) dt

The function f has some value f(tn,yn) at time tn. To define the Euler method (RK1_euler), let’s assume

that f maintains this value until the next sample time, tn+1 [2].

f(t,y) ≈ f(tn,yn) ∀ t ∈ [tn, tn+1)

Since f(tn,yn) is now treated as a constant over the time interval [tn, tn+1), we can pull it out from under the integrand.

yn+1 = yn + f(t,yn)

ˆ tn+1

tn

dt = yn + f(tn,yn)(tn+1 − tn︸ ︷︷ ︸
h

)

yn+1 = yn + hf(tn, yn) (5.3)

5.3 Runge-Kutta Second-Order Methods

Method Abbreviation Equations Reference(s)

Midpoint Method RK2

k1 = f (tn,yn)

k2 = f

(
tn +

h

2
, yn +

hk1

2

)
yn+1 = yn + hk2

[5, 9]

Heun’s

Second-Order

Method

RK2_heun

k1 = f (tn,yn)

k2 = f (tn + h, yn + hk1)

yn+1 = yn +
h

2
(k1 + k2)

[5, 9]

Ralston’s

Second-Order

Method

RK2_ralston

k1 = f (tn,yn)

k2 = f

(
tn +

2h

3
, yn +

2hk1

3

)
yn+1 = yn +

h

4
(k1 + 3k2)

[5, 9]

5.4 Runge-Kutta Third-Order Methods

5.5 Runge-Kutta Fourth-Order Methods 51

Method Abbreviation Equations Reference(s)

Classic (Kutta’s)

Third-Order Method
RK3

k1 = f (tn,yn)

k2 = f

(
tn +

h

2
,yn +

hk1

2

)
k3 = f (tn + h,yn − hk1 + 2hk2)

yn+1 = yn +
h

6
(k1 + 4k2 + k3)

[3, pp. 129–131][5]

Heun’s Third-Order

Method
RK3_heun

k1 = f (tn,yn)

k2 = f

(
tn +

h

3
,yn +

hk1

3

)
k3 = f

(
tn +

2h

3
,yn +

2hk2

3

)
yn+1 = yn +

h

4
(k1 + 3k3)

[1, p. 287][3, pp.

129–131][5]

Ralston’s

Third-Order Method
RK3_ralston

k1 = f (tn,yn)

k2 = f

(
tn +

h

2
,yn +

hk1

2

)
k3 = f

(
tn +

3h

4
,yn +

3hk2

4

)
yn+1 = yn +

h

9
(2k1 + 3k2 + 4k3)

[5]

Strong Stability

Preserving

Runge-Kutta

Third-Order Method

SSPRK3

k1 = f (tn,yn)

k2 = f (tn + h,yn + hk1)

k3 = f

(
tn +

h

2
,yn +

hk1

4
+

hk2

4

)
yn+1 = yn +

h

6
(k1 + k2 + 4k3)

[5]

5.5 Runge-Kutta Fourth-Order Methods

Method Abbreviation Equations Reference(s)

Classic Fourth-Order

Method
RK4

k1 = f (tn,yn)

k2 = f

(
tn +

h

2
,yn +

hk1

2

)
k3 = f

(
tn +

h

2
,yn +

hk2

2

)
k4 = f (tn + h,yn + hk3)

yn+1 = yn +
h

6
(k1 + 2k2 + 2k3 + k4)

[1, p. 288][3, p.

131][5]

52 Chapter 5 Explicit Runga-Kutta (Single-Step) Methods

Ralston’s

Fourth-Order

Method

RK4_ralston

k1 = f (tn,yn)

k2 = f (tn + 0.4h,yn + 0.4hk1)

k3 = f (tn + 0.45573725h,yn + 0.29697761hk1

+ 0.15875964hk2)

k4 = f (tn + h,yn + 0.21810040hk1

− 3.05096516hk2 + 3.83286476hk3)

yn+1 = yn + h (0.17476028k1 − 0.55148066k2

+ 1.20553560k3 + 0.17118478k4)

[5]

3/8-Rule

Fourth-Order

Method

RK4_38

k1 = f (tn,yn)

k2 = f

(
tn +

h

3
,yn +

hk1

3

)
k3 = f

(
tn +

2h

3
,yn −

hk1

3
+ hk2

)
k4 = f (tn + h,yn + hk1 − hk2 + hk3)

yn+1 = yn +
h

8
(k1 + 3k2 + 3k3 + k4)

[5]

5.6 List of Butcher Tableaus

Euler Method [5]

(RK1_euler)
0 0

1

Midpoint Method [5]

(RK2)

0 0 0
1/2 1/2 0

0 1

Heun’s Second-Order

Method [5]

(RK2_heun)

0 0 0
1 1 0

1/2 1/2

Ralston’s Second-Order

Method [5]

(RK2_ralston)

0 0 0
2/3 2/3 0

1/4 3/4

Classic (Kutta’s)

Third-Order Method [3,

p. 131][5]

(RK3)

0 0 0 0
1/2 1/2 0 0
1 −1 2 0

1/6 2/3 1/6

5.6 List of Butcher Tableaus 53

Heun’s Third-Order

Method [3, p. 131][5]

(RK3_heun)

0 0 0 0
1/3 1/3 0 0
2/3 0 2/3 0

1/4 0 3/4

Ralston’s Third-Order

Method [5]

(RK3_ralston)

0 0 0 0
1/2 1/2 0 0
3/4 0 3/4 0

2/9 1/3 4/9

Strong Stability

Preserving Runge-Kutta

Third-Order Method [5]

(SSPRK3)

0 0 0 0
1 1 0 0
1/2 1/4 1/4 0

1/6 1/6 2/3

Classic Fourth-Order

Method [3, p. 131][5]

(RK4)

0 0 0 0 0
1/2 1/2 0 0 0
1/2 0 1/2 0 0
1 0 0 1 0

1/6 1/3 1/3 1/6

Ralston’s Fourth-Order

Method [5]

(RK4_ralston)

0 0 0 0 0
0.4 0.4 0 0 0

0.45573725 0.29697761 0.15875964 0 0
1 0.21810040 −3.05096516 3.83286476 0

0.17476028 −0.55148066 1.20553560 0.17118478

3/8-Rule Fourth-Order

Method [5]

(RK4_38)

0 0 0 0 0
1/3 1/3 0 0 0
2/3 −1/3 1 0 0
1 1 −1 1 0

1/8 3/8 3/8 1/8

54 Chapter 5 Explicit Runga-Kutta (Single-Step) Methods

5.7 Algorithms

Algorithm 12: RK1_euler
Propagates the state vector forward one time step using the Euler
(first-order) method.

Given:
• f(t,y) - multivariate, vector-valued function defining the vector-valued ODE,

dy/dt = f(t,y) (f : R× Rp → Rp)

• t ∈ R - current sample time

• y ∈ Rp - state vector (i.e. solution) at current sample time

• h ∈ R - step size

Procedure:

ynext = y + hf(t,y)

Return:
• ynext ∈ Rp - state vector (i.e. solution) at the next sample time (i.e. t+ h)

Algorithm 13: RK2
Propagates the state vector forward one time step using the mid-
point method (Runge-Kutta second-order method).

Given:
• f(t,y) - multivariate, vector-valued function defining the vector-valued ODE,

dy/dt = f(t,y) (f : R× Rp → Rp)

• t ∈ R - current sample time

• y ∈ Rp - state vector (i.e. solution) at current sample time

• h ∈ R - step size

Procedure:
1. k terms.

k1 = f (t,y)

k2 = f

(
t+

h

2
, yn +

hk1

2

)
2. State vector propagated to next sample time.

ynext = y + hk2

Return:
• ynext ∈ Rp - state vector (i.e. solution) at the next sample time (i.e. t+ h)

5.7 Algorithms 55

Algorithm 14: RK2_heun
Propagates the state vector forward one time step using Heun's
second-order method (Runge-Kutta second-order method).

Given:
• f(t,y) - multivariate, vector-valued function defining the vector-valued ODE,

dy/dt = f(t,y) (f : R× Rp → Rp)

• t ∈ R - current sample time

• y ∈ Rp - state vector (i.e. solution) at current sample time

• h ∈ R - step size

Procedure:
1. k terms.

k1 = f (t,y)

k2 = f (t+ h, yn + hk1)

2. State vector propagated to next sample time.

ynext = y +
h

2
(k1 + k2)

Return:
• ynext ∈ Rp - state vector (i.e. solution) at the next sample time (i.e. t+ h)

Algorithm 15: RK2_ralston
Propagates the state vector forward one time step using Ralston's
second-order method (Runge-Kutta second-order method).

Given:
• f(t,y) - multivariate, vector-valued function defining the vector-valued ODE,

dy/dt = f(t,y) (f : R× Rp → Rp)

• t ∈ R - current sample time

• y ∈ Rp - state vector (i.e. solution) at current sample time

• h ∈ R - step size

Procedure:
1. k terms.

k1 = f (t,y)

k2 = f

(
t+

2h

3
, yn +

2hk1

3

)
2. State vector propagated to next sample time.

ynext = y +
h

4
(k1 + 3k2)

Return:
• ynext ∈ Rp - state vector (i.e. solution) at the next sample time (i.e. t+ h)

56 Chapter 5 Explicit Runga-Kutta (Single-Step) Methods

Algorithm 16: RK3
Propagates the state vector forward one time step using (Kutta's)
Runge-Kutta third-order method.

Given:
• f(t,y) - multivariate, vector-valued function defining the vector-valued ODE,

dy/dt = f(t,y) (f : R× Rp → Rp)

• t ∈ R - current sample time

• y ∈ Rp - state vector (i.e. solution) at current sample time

• h ∈ R - step size

Procedure:
1. k terms.

k1 = f (t,y)

k2 = f

(
t+

h

2
,y +

hk1

2

)
k3 = f (t+ h,y − hk1 + 2hk2)

2. State vector propagated to next sample time.

ynext = y +
h

6
(k1 + 4k2 + k3)

Return:
• ynext ∈ Rp - state vector (i.e. solution) at the next sample time (i.e. t+ h)

Algorithm 17: RK3_heun
Propagates the state vector forward one time step using Heun's
third-order method (Runge-Kutta third-order method).

Given:
• f(t,y) - multivariate, vector-valued function defining the vector-valued ODE,

dy/dt = f(t,y) (f : R× Rp → Rp)

• t ∈ R - current sample time

• y ∈ Rp - state vector (i.e. solution) at current sample time

• h ∈ R - step size

Procedure:
1. k terms.

k1 = f (t,y)

k2 = f

(
t+

h

3
,y +

hk1

3

)
k3 = f

(
t+

2h

3
,y +

2hk2

3

)
2. State vector propagated to next sample time.

ynext = y +
h

4
(k1 + 3k3)

5.7 Algorithms 57

Return:
• ynext ∈ Rp - state vector (i.e. solution) at the next sample time (i.e. t+ h)

Algorithm 18: RK3_ralston
Propagates the state vector forward one time step using Ralston's
third-order method (Runge-Kutta third-order method).

Given:
• f(t,y) - multivariate, vector-valued function defining the vector-valued ODE,

dy/dt = f(t,y) (f : R× Rp → Rp)

• t ∈ R - current sample time

• y ∈ Rp - state vector (i.e. solution) at current sample time

• h ∈ R - step size

Procedure:
1. k terms.

k1 = f (t,y)

k2 = f

(
t+

h

2
,y +

hk1

2

)
k3 = f

(
t+

3h

4
,y +

3hk2

4

)
2. State vector propagated to next sample time.

ynext = y +
h

9
(2k1 + 3k2 + 4k3)

Return:
• ynext ∈ Rp - state vector (i.e. solution) at the next sample time (i.e. t+ h)

Algorithm 19: SSPRK3
Propagates the state vector forward one time step using the strong
stability preserving Runge-Kutta third-order method.

Given:
• f(t,y) - multivariate, vector-valued function defining the vector-valued ODE,

dy/dt = f(t,y) (f : R× Rp → Rp)

• t ∈ R - current sample time

• y ∈ Rp - state vector (i.e. solution) at current sample time

• h ∈ R - step size

Procedure:

58 Chapter 5 Explicit Runga-Kutta (Single-Step) Methods

1. k terms.

k1 = f (t,y)

k2 = f (t+ h,y + hk1)

k3 = f

(
t+

h

2
,y +

hk1

4
+

hk2

4

)
2. State vector propagated to next sample time.

ynext = y +
h

6
(k1 + k2 + 4k3)

Return:
• ynext ∈ Rp - state vector (i.e. solution) at the next sample time (i.e. t+ h)

Algorithm 20: RK4
Propagates the state vector forward one time step using the (clas-
sic) Runge-Kutta fourth-order method.

Given:
• f(t,y) - multivariate, vector-valued function defining the vector-valued ODE,

dy/dt = f(t,y) (f : R× Rp → Rp)

• t ∈ R - current sample time

• y ∈ Rp - state vector (i.e. solution) at current sample time

• h ∈ R - step size

Procedure:
1. k terms.

k1 = f (t,y)

k2 = f

(
t+

h

2
,y +

hk1

2

)
k3 = f

(
t+

h

2
,y +

hk2

2

)
k4 = f (t+ h,y + hk3)

2. State vector propagated to next sample time.

ynext = y +
h

6
(k1 + 2k2 + 2k3 + k4)

Return:
• ynext ∈ Rp - state vector (i.e. solution) at the next sample time (i.e. t+ h)

5.7 Algorithms 59

Algorithm 21: RK4_ralston
Propagates the state vector forward one time step using Ralston's
fourth-order method (Runge-Kutta fourth-order method).

Given:
• f(t,y) - multivariate, vector-valued function defining the vector-valued ODE,

dy/dt = f(t,y) (f : R× Rp → Rp)

• t ∈ R - current sample time

• y ∈ Rp - state vector (i.e. solution) at current sample time

• h ∈ R - step size

Procedure:
1. k terms.

k1 = f (t,y)

k2 = f (t+ 0.4h,y + 0.4hk1)

k3 = f (t+ 0.45573725h,y + 0.29697761hk1 + 0.15875964hk2)

k4 = f (t+ h,y + 0.21810040hk1 − 3.05096516hk2 + 3.83286476hk3)

2. State vector propagated to next sample time.

ynext = y + h (0.17476028k1 − 0.55148066k2 + 1.20553560k3

+ 0.17118478k4)

Return:
• ynext ∈ Rp - state vector (i.e. solution) at the next sample time (i.e. t+ h)

Algorithm 22: RK4_38
Propagates the state vector forward one time step using the 3/8-
rule fourth-order method (Runge-Kutta fourth-order method).

Given:
• f(t,y) - multivariate, vector-valued function defining the vector-valued ODE,

dy/dt = f(t,y) (f : R× Rp → Rp)

• t ∈ R - current sample time

• y ∈ Rp - state vector (i.e. solution) at current sample time

• h ∈ R - step size

Procedure:
1. k terms.

k1 = f (t,y)

k2 = f

(
t+

h

3
,y +

hk1

3

)
k3 = f

(
t+

2h

3
,y − hk1

3
+ hk2

)
k4 = f (t+ h,y + hk1 − hk2 + hk3)

60 Chapter 5 Explicit Runga-Kutta (Single-Step) Methods

2. State vector propagated to next sample time.

ynext = y +
h

8
(k1 + 3k2 + 3k3 + k4)

Return:
• ynext ∈ Rp - state vector (i.e. solution) at the next sample time (i.e. t+ h)

6
Adams-Bashforth (Multistep

Predictor) Methods

6.1 Adams-Bashforth Predictor
The general Adams-Bashforth predictor is defined as

yn+1 = yn + h

m∑
i=1

bif(tn−i+1,yn−i+1) (6.1)

wherem is the order of the method.

To find the vector b = (b1, ..., bm)T storing the vectors for this predictor, we first define the matrixA ∈ Rn×n

and the vector c ∈ Rm as

A =



1 1 1 . . . 1 1
0 1 2 . . . m (m− 1)
0 1 22 . . . m2 (m− 1)2

0 1 23 . . . m3 (m− 1)3

...
...

...
...

...
0 1 2m−1 . . . mm−1 (m− 1)m−1


, c =



1
− 1

2
1
3
− 1

4
...

(−1)m−1

m


This can be more compactly expressed as

A = [aij] where aij = (j − 1)i−1 (for i, j = 1, 2, ..., n) (6.2)

c = [ci] where ci =
(−1)i−1

i
(for i = 1, 2, ..., n) (6.3)

Next, we just need to solve the linear systemAb = c for b [10].

b = A−1c (6.4)

62 Chapter 6 Adams-Bashforth (Multistep Predictor) Methods

6.2 Adams-Bashforth Methods

Order Abbrev. Equations Reference(s)

2 AB2 yn+1 = yn +
h

2
(3fn − fn−1) [4][6, pp. 135–136]

3 AB3 yn+1 = yn+1 = yn +
h

12
(23fn − 16fn−1 + 5fn−2) [4][6, pp. 135–136]

4 AB4 yn+1 = yn +
h

24
(55fn − 59fn−1 + 37fn−2 − 9fn−3) [4][6, pp. 135–136]

5 AB5
yn+1 = yn +

h

720
(1901fn − 2774fn−1 + 2616fn−2

− 1274fn−3 + 251fn−4)
[4][6, pp. 135–136]

6 AB6
yn+1 = yn +

h

1440
(4277fn − 7923fn−1 + 9982fn−2

− 7298fn−3 + 2877fn−4 − 475fn−5)
[6, pp. 135–136]

7 AB7
yn+1 = yn +

h

60480
(198721fn − 447288fn−1 + 705549fn−2

− 688256fn−3 + 407139fn−4 − 134472fn−5

+ 19087fn−6)

[6, pp. 135–136]

8 AB8
yn+1 = yn +

h

120960
(434241fn − 1152169fn−1 + 2183877fn−2

− 2664477fn−3 + 2102243fn−4 − 1041723fn−5

+ 295767fn−6 − 36799fn−7)

[6, pp. 135–136]

6.3 Algorithms

These algorithms are written in terms of the F matrix discussed in Section 3.5.2.

Algorithm 23: AB2
Propagates the state vector forward one time step using theAdams-
Bashforth 2nd-order method.

Given:
• f(t,y) - multivariate, vector-valued function defining the vector-valued ODE,

dy/dt = f(t,y) (f : R× Rp → Rp)

• t ∈ R - current sample time

• F ∈ Rp×3 - F matrix for current sample time

• h ∈ R - step size

Procedure:
1. Updates F matrix with new function evaluation.

F =
[
F(2) f(t,F(3)) F(3)

]
2. State vector propagated to next sample time.

F(3) = F(3) +
h

2

(
3F(2) − F(1)

)

6.3 Algorithms 63

Return:
• F ∈ Rp×3 - F matrix updated for next sample time

Algorithm 24: AB3
Propagates the state vector forward one time step using theAdams-
Bashforth 3rd-order method.

Given:
• f(t,y) - multivariate, vector-valued function defining the vector-valued ODE,

dy/dt = f(t,y) (f : R× Rp → Rp)

• t ∈ R - current sample time

• F ∈ Rp×4 - F matrix for current sample time

• h ∈ R - step size

Procedure:
1. Updates F matrix with new function evaluation.

F =
[
F(2:3) f(t,F(4)) F(4)

]
2. State vector propagated to next sample time.

F(4) = F4) +
h

12

(
23F(3) − 16F(2) + 5F(1)

)
Return:

• F ∈ Rp×4 - F matrix updated for next sample time

Algorithm 25: AB4
Propagates the state vector forward one time step using theAdams-
Bashforth 4th-order method.

Given:
• f(t,y) - multivariate, vector-valued function defining the vector-valued ODE,

dy/dt = f(t,y) (f : R× Rp → Rp)

• t ∈ R - current sample time

• F ∈ Rp×5 - F matrix for current sample time

• h ∈ R - step size

Procedure:
1. Updates F matrix with new function evaluation.

F =
[
F(2:4) f(t,F(5)) F(5)

]
2. State vector propagated to next sample time.

F(5) = F(5) +
h

24

(
55F(4) − 59F(3) + 37F(2) − 9F(1)

)
Return:

• F ∈ Rp×5 - F matrix updated for next sample time

64 Chapter 6 Adams-Bashforth (Multistep Predictor) Methods

Algorithm 26: AB5
Propagates the state vector forward one time step using theAdams-
Bashforth 5th-order method.

Given:
• f(t,y) - multivariate, vector-valued function defining the vector-valued ODE,

dy/dt = f(t,y) (f : R× Rp → Rp)

• t ∈ R - current sample time

• F ∈ Rp×6 - F matrix for current sample time

• h ∈ R - step size

Procedure:
1. Updates F matrix with new function evaluation.

F =
[
F(2:5) f(t,F(6)) F(6)

]
2. State vector propagated to next sample time.

F(6) = F(6) +
h

720

(
1901F(5) − 2774F(4) + 2616F(3) − 1274F(2)

+ 251F(1)
)

Return:
• F ∈ Rp×6 - F matrix updated for next sample time

Algorithm 27: AB6
Propagates the state vector forward one time step using theAdams-
Bashforth 6th-order method.

Given:
• f(t,y) - multivariate, vector-valued function defining the vector-valued ODE,

dy/dt = f(t,y) (f : R× Rp → Rp)

• t ∈ R - current sample time

• F ∈ Rp×7 - F matrix for current sample time

• h ∈ R - step size

Procedure:
1. Updates F matrix with new function evaluation.

F =
[
F(2:6) f(t,F(7)) F(7)

]
2. State vector propagated to next sample time.

F(7) = F(7) +
h

1440

(
4277F(6) − 7923F(5) + 9982F(4) − 7298F(3)

+ 2877F(2) − 475F(1)
)

Return:
• F ∈ Rp×7 - F matrix updated for next sample time

6.3 Algorithms 65

Algorithm 28: AB7
Propagates the state vector forward one time step using theAdams-
Bashforth 7th-order method.

Given:
• f(t,y) - multivariate, vector-valued function defining the vector-valued ODE,

dy/dt = f(t,y) (f : R× Rp → Rp)

• t ∈ R - current sample time

• F ∈ Rp×8 - F matrix for current sample time

• h ∈ R - step size

Procedure:
1. Updates F matrix with new function evaluation.

F =
[
F(2:7) f(t,F(8)) F(8)

]
2. State vector propagated to next sample time.

F(8) = F(8) +
h

60480

(
198721F(7) − 447288F(6) + 705549F(5)

− 688256F(4) + 407139F(3) − 134472F(2)

+ 19087F(1)
)

Return:
• F ∈ Rp×8 - F matrix updated for next sample time

Algorithm 29: AB8
Propagates the state vector forward one time step using theAdams-
Bashforth 8th-order method.

Given:
• f(t,y) - multivariate, vector-valued function defining the vector-valued ODE,

dy/dt = f(t,y) (f : R× Rp → Rp)

• t ∈ R - current sample time

• F ∈ Rp×9 - F matrix for current sample time

• h ∈ R - step size

Procedure:
1. Updates F matrix with new function evaluation.

F =
[
F(2:8) f(t,F(9)) F(9)

]
2. State vector propagated to next sample time.

F(9) = F(9) +
h

120960

(
434241F(8) − 1152169F(7) + 2183877F(6)

− 2664477F(5) + 2102243F(4) − 1041723F(3)

+ 295767F(2) − 36799F(1)
)

Return:
• F ∈ Rp×9 - F matrix updated for next sample time

7
Adams-Bashforth-Moulton

(Multistep Predictor-Corrector)
Methods

7.1 Adams-Moulton Corrector
The general Adams-Moulton corrector is defined as

yn+1 = yn + h

m∑
i=1

bif(tn−i+2,yn−i+2) (7.1)

wherem is the order of the method.

To find the vector b = (b1, ..., bm)T storing the vectors for this corrector, we first define the matrixA ∈ Rm×m

and the vector c ∈ Rm as

A =



1 1 1 1 . . . 1 1
−1 0 1 2 . . . (m− 3) (m− 2)
1 0 1 22 . . . (m− 3)2 (m− 2)2

...
...

...
...

...
(−1)m−2 0 1 2m−2 . . . (m− 3)m−2 (m− 2)m−2

(−1)m−1 0 1 2m−1 . . . (m− 3)m−1 (m− 2)m−1


, c =



1
− 1

2
1
3
...

(−1)m−2

m−1
(−1)m−1

m


This can be more compactly expressed as

A = [aij] where aij = (j − 2)i−1 (for i, j = 1, 2, ...,m) (7.2)

c = [ci] where ci =
(−1)i−1

i
(for i = 1, 2, ...,m) (7.3)

Next, we just need to solve the linear systemAb = c for b [10].

b = A−1c (7.4)

7.2 Predictor-Corrector (PECE) Algorithms 67

7.2 Predictor-Corrector (PECE) Algorithms
Let fk represent the evaluation of the ODE dy/dt = f(t,y) at time tk and state yk.

fk = f(tk,yk)

The Adams-Bashforth methods discussed in Chapter 6 were explicit methods, since the state vector at the next sample

time could be calculated explicitly from evaluating the ODE using the state vector at previous sample times. In general,

this can be expressed as

yk+1 = g(fk, fk−1, ..., f0)

However, the Adams-Moulton corrector introduced in Section 7.1 defines implicitmethods, since the state vector at the

next sample time is expressed as a function of fk+1, where fk+1 = f(tk+1,yk+1) (i.e. yk+1 is essentially a function

of itself):

yk+1 = g(fk+1, fk, fk−1, ..., f0)

Predictor-corrector algorithms combine predictor and corrector methods and are defined using the following four

steps:

1. Predict yk+1 at time tk+1 using an explicit method of order m. Since this is a predicted value, we denote it

using a hat as ŷk+1.

ŷk+1 = g(fk, fk−1, ..., f0)

2. Evaluate the ODE dy/dt = f(t,y) at tk+1 and ŷk+1.

f̂k+1 = f(tk+1, ŷk+1)

3. Correct the prediction for yk+1 using an implicit method of order m. Since this is the corrected value (that we

are assuming to be the true value, i.e. the solution), we do not denote it using a hat.

yk+1 = g(f̂k+1, fk, fk−1, ..., f0)

4. Evaluate the ODE at the corrected value for the state vector at the (k + 1)th sample time.

fk+1 = f(tk+1,yk+1)

Due to the four steps above (predict, evaluate, correct, evaluate), predictor-corrector algorithms are also known as

PECE algorithms [3, pp. 112–113][6, p. 138]. In their implementation in the IVP Solver Toolbox (general implemen-

tation outlined in Section 3.9), the steps are slightly condensed/reordered as follows:

1. Evaluate the ODE dy/dt = f(t,y) at tk and yk.

fk = f(tk,yk)

2. Predict yk+1 at time tk+1 using an explicit method of order m. Since this is a predicted value, we denote it

using a hat as ŷk+1.

ŷk+1 = g(fk, fk−1, ..., f0)

3. Correct the prediction for yk+1 using an implicit method of order m. Since this is the corrected value (that we

are assuming to be the true value, i.e. the solution), we do not denote it using a hat.

yk+1 = g(f(tk+1, ŷk+1), fk, fk−1, ..., f0)

68 Chapter 7 Adams-Bashforth-Moulton (Multistep Predictor-Corrector) Methods

7.3 Adams-Bashforth-Moulton Methods

Order Abbrev. Equations Reference(s)

2 ABM2
ŷn+1 = yn +

h

2
(3fn − fn−1)

yn+1 = yn +
h

2
[f(tn+1, ŷn+1) + fn]

[4][6, pp. 135–138]

3 ABM3
ŷn+1 = yn +

h

12
(23fn − 16fn−1 + 5fn−2)

yn+1 = yn +
h

12
[5f(tn+1, ŷn+1) + 8fn − fn−1]

[4][6, pp. 135–138]

4 ABM4
ŷn+1 = yn +

h

24
(55fn − 59fn−1 + 37fn−2 − 9fn−3)

yn+1 = yn +
h

24
[9f(tn+1, ŷn+1) + 19fn − 5fn−1 + fn−2]

[4][6, pp. 135–138]

5 ABM5

ŷn+1 = yn +
h

720
(1901fn − 2774fn−1 + 2616fn−2

− 1274fn−3 + 251fn−4)

yn+1 = yn +
h

720
[251f(tn+1, ŷn+1) + 646fn − 264fn−1

+ 106fn−2 − 19fn−3]

[4][6, pp. 135–138]

6 ABM6

ŷn+1 = yn +
h

1440
(4277fn − 7923fn−1 + 9982fn−2

− 7298fn−3 + 2877fn−4 − 475fn−5)

yn+1 = yn +
h

1440
[475f(tn+1, ŷn+1) + 1427fn − 798fn−1

+ 482fn−2 − 173fn−3 + 27fn−4]

[6, pp. 135–138]

7 ABM7

ŷn+1 = yn +
h

60480
(198721fn − 447288fn−1 + 705549fn−2

− 688256fn−3 + 407139fn−4 − 134472fn−5

+ 19087fn−6)

yn+1 = yn +
h

60480
[19087f(tn+1, ŷn+1) + 65112fn − 46461fn−1

+ 37504fn−2 − 20211fn−3 + 6312fn−4

− 863fn−5]

[6, pp. 135–138]

8 ABM8

ŷn+1 = yn +
h

120960
(434241fn − 1152169fn−1 + 2183877fn−2

− 2664477fn−3 + 2102243fn−4 − 1041723fn−5

+ 295767fn−6 − 36799fn−7)

yn+1 = yn +
h

120960
[36799f(tn+1, ŷn+1) + 139849fn − 121797fn−1

+ 123133fn−2 − 88547fn−3

+ 41499fn−4 − 11351fn−5 + 1375fn−6]

[6, pp. 135–138]

7.4 Algorithms

These algorithms are written in terms of the F matrix discussed in Section 3.5.2.

7.4 Algorithms 69

Algorithm 30: ABM2
Propagates the state vector forward one time step using theAdams-
Bashforth-Moulton 2nd-order method.

Given:
• f(t,y) - multivariate, vector-valued function defining the vector-valued ODE,

dy/dt = f(t,y) (f : R× Rp → Rp)

• t ∈ R - current sample time

• F ∈ Rp×3 - F matrix for current sample time

• h ∈ R - step size

Procedure:
1. Updates F matrix with new function evaluation.

F =
[
F(2) f(t,F(3)) F(3)

]
2. Predictor step.

ŷ = F(3) +
h

2

(
3F(2) − F(1)

)
3. Corrector step.

F(3) = F(3) +
h

2

[
f(t+ h, ŷ) + F(2)

]
Return:

• F ∈ Rp×3 - F matrix updated for next sample time

Algorithm 31: ABM3
Propagates the state vector forward one time step using theAdams-
Bashforth-Moulton 3rd-order method.

Given:
• f(t,y) - multivariate, vector-valued function defining the vector-valued ODE,

dy/dt = f(t,y) (f : R× Rp → Rp)

• t ∈ R - current sample time

• F ∈ Rp×4 - F matrix for current sample time

• h ∈ R - step size

Procedure:
1. Updates F matrix with new function evaluation.

F =
[
F(2:3) f(t,F(4)) F(4)

]
2. Predictor step.

ŷ = F(4) +
h

12

(
23F(3) − 16F(2) + 5F(1)

)
3. Corrector step.

F(4) = F(4) +
h

12

[
5f(t+ h, ŷ) + 8F(3) − F(2)

]

70 Chapter 7 Adams-Bashforth-Moulton (Multistep Predictor-Corrector) Methods

Return:
• F ∈ Rp×4 - F matrix updated for next sample time

Algorithm 32: ABM4
Propagates the state vector forward one time step using theAdams-
Bashforth-Moulton 4th-order method.

Given:
• f(t,y) - multivariate, vector-valued function defining the vector-valued ODE,

dy/dt = f(t,y) (f : R× Rp → Rp)

• t ∈ R - current sample time

• F ∈ Rp×5 - F matrix for current sample time

• h ∈ R - step size

Procedure:
1. Updates F matrix with new function evaluation.

F =
[
F(2:4) f(t,F(5)) F(5)

]
2. Predictor step.

ŷ = F(5) +
h

24

(
55F(4) − 59F(3) + 37F(2) − 9F(1)

)
3. Corrector step.

F(5) = F(5) +
h

24

[
9f(t+ h, ŷ) + 19F(4) − 5F(3) + F(2)

]
Return:

• F ∈ Rp×5 - F matrix updated for next sample time

Algorithm 33: ABM5
Propagates the state vector forward one time step using theAdams-
Bashforth-Moulton 5th-order method.

Given:
• f(t,y) - multivariate, vector-valued function defining the vector-valued ODE,

dy/dt = f(t,y) (f : R× Rp → Rp)

• t ∈ R - current sample time

• F ∈ Rp×6 - F matrix for current sample time

• h ∈ R - step size

Procedure:
1. Updates F matrix with new function evaluation.

F =
[
F(2:5) f(t,F(6)) F(6)

]
2. Predictor step.

ŷ = F(6) +
h

720

(
1901F(5) − 2774F(4) + 2616F(3) − 1274F(2) + 251F(1)

)

7.4 Algorithms 71

3. Corrector step.

F(6) = F(6) +
h

720

[
251f(t+ h, ŷ) + 646F(5) − 264F(4) + 106F(3)

− 19F(2)
]

Return:
• F ∈ Rp×6 - F matrix updated for next sample time

Algorithm 34: ABM6
Propagates the state vector forward one time step using theAdams-
Bashforth-Moulton 6th-order method.

Given:
• f(t,y) - multivariate, vector-valued function defining the vector-valued ODE,

dy/dt = f(t,y) (f : R× Rp → Rp)

• t ∈ R - current sample time

• F ∈ Rp×7 - F matrix for current sample time

• h ∈ R - step size

Procedure:
1. Updates F matrix with new function evaluation.

F =
[
F(2:6) f(t,F(7)) F(7)

]
2. Predictor step.

ŷ = F(7) +
h

1440

(
4277F(6) − 7923F(5) + 9982F(4) − 7298F(3)

+ 2877F(2) − 475F(1)
)

3. Corrector step.

F(7) = F(7) +
h

1440

[
475f(t+ h, ŷ) + 1427F(6) − 798F(5) + 482F(4)

− 173F(3) + 27F(2)
]

Return:
• F ∈ Rp×7 - F matrix updated for next sample time

Algorithm 35: ABM7
Propagates the state vector forward one time step using theAdams-
Bashforth-Moulton 7th-order method.

Given:

72 Chapter 7 Adams-Bashforth-Moulton (Multistep Predictor-Corrector) Methods

• f(t,y) - multivariate, vector-valued function defining the vector-valued ODE,

dy/dt = f(t,y) (f : R× Rp → Rp)

• t ∈ R - current sample time

• F ∈ Rp×8 - F matrix for current sample time

• h ∈ R - step size

Procedure:
1. Updates F matrix with new function evaluation.

F =
[
F(2:7) f(t,F(8)) F(8)

]
2. Predictor step.

ŷ = F(8) +
h

60480

(
198721F(7) − 447288F(6) + 705549F(5)

− 688256F(4) + 407139F(3) − 134472F(2)

+ 19087F(1)
)

3. Corrector step.

F(8) = F(8) +
h

60480

[
19087f(t+ h, ŷ) + 65112F(7) − 46461F(6)

+ 37504F(5) − 20211F(4) + 6312F(3) − 863F(2)
]

Return:
• F ∈ Rp×8 - F matrix updated for next sample time

Algorithm 36: ABM8
Propagates the state vector forward one time step using theAdams-
Bashforth-Moulton 8th-order method.

Given:
• f(t,y) - multivariate, vector-valued function defining the vector-valued ODE,

dy/dt = f(t,y) (f : R× Rp → Rp)

• t ∈ R - current sample time

• F ∈ Rp×9 - F matrix for current sample time

• h ∈ R - step size

Procedure:
1. Updates F matrix with new function evaluation.

F =
[
F(2:8) f(t,F(9)) F(9)

]
2. Predictor step.

ŷ = F(9) +
h

120960

(
434241F(8) − 1152169F(7) + 2183877F(6)

− 2664477F(5) + 2102243F(4) − 1041723F(3)

+ 295767F(2) − 36799F(1)
)

7.4 Algorithms 73

3. Corrector step.

F(9) = F(9) +
h

120960

[
36799f(t+ h, ŷ) + 139849F(8) − 121797F(7)

+ 123133F(6) − 88547F(5) + 41499F(4)

− 11351F(3) + 1375F(2)
]

Return:
• F ∈ Rp×9 - F matrix updated for next sample time

References

[1] Richard L. Burden and J. Douglas Faires.Numerical Analysis. 9th. Boston,MA:Brooks/Cole, Cengage Learning,

2011.

[2] Euler method. Wikipedia. Accessed: December 12, 2021. URL: https://en.wikipedia.org/wiki/
Euler_method.

[3] David F. Griffiths and Desmond J. Higham. Numerical Methods for Ordinary Differential Equations: Initial

Value Problems. London, UK: Springer-Verlag, 2010.

[4] Linear multistep method. Wikipedia. Accessed: November 1, 2021. URL: https://en.wikipedia.org/
wiki/Linear_multistep_method.

[5] List of Runge-Kutta methods. Wikipedia. Accessed: November 1, 2021. URL: https://en.wikipedia.
org/wiki/List_of_Runge-Kutta_methods.

[6] OliverMontenbruck and Eberhard Gill. Satellite Orbits –Models, Methods, Applications. 4th. Berlin Heidelberg:

Springer-Verlag, 2012.

[7] Multidimensional Arrays. MathWorks. Accessed: August 30, 2022. URL: https://www.mathworks.com/
help/matlab/math/multidimensional-arrays.html.

[8] Passing Extra Parameters. MathWorks. Accessed: June 10, 2020. URL: https://www.mathworks.com/
help/optim/ug/passing-extra-parameters.html.

[9] Runge-Kutta methods. Wikipedia. Accessed: November 1, 2021. URL: https://en.wikipedia.org/
wiki/Runge-Kutta_methods.

[10] Baba Seidu. “A Matrix System for Computing the Coefficients of the Adams Bashforth-Moulton Predictor-

Corrector formulae”. In: International Journal of Computational and Applied Mathematics 6.3 (2011), pp. 215–

220. URL: https://www.researchgate.net/publication/249655976_A_Matrix_System_for_
Computing_the_Coefficients_of_the_Adams_Bashforth-Moulton_Predictor-Corrector_
formulae.

[11] State variable.Wikipedia. Accessed: December 3, 2020. URL: https://en.wikipedia.org/wiki/State_
variable.

[12] State vector (navigation). Wikipedia. Accessed: December 3, 2020. URL: https://en.wikipedia.org/
wiki/State_vector_(navigation).

https://en.wikipedia.org/wiki/Euler_method
https://en.wikipedia.org/wiki/Euler_method
https://en.wikipedia.org/wiki/Linear_multistep_method
https://en.wikipedia.org/wiki/Linear_multistep_method
https://en.wikipedia.org/wiki/List_of_Runge-Kutta_methods
https://en.wikipedia.org/wiki/List_of_Runge-Kutta_methods
https://www.mathworks.com/help/matlab/math/multidimensional-arrays.html
https://www.mathworks.com/help/matlab/math/multidimensional-arrays.html
https://www.mathworks.com/help/optim/ug/passing-extra-parameters.html
https://www.mathworks.com/help/optim/ug/passing-extra-parameters.html
https://en.wikipedia.org/wiki/Runge-Kutta_methods
https://en.wikipedia.org/wiki/Runge-Kutta_methods
https://www.researchgate.net/publication/249655976_A_Matrix_System_for_Computing_the_Coefficients_of_the_Adams_Bashforth-Moulton_Predictor-Corrector_formulae
https://www.researchgate.net/publication/249655976_A_Matrix_System_for_Computing_the_Coefficients_of_the_Adams_Bashforth-Moulton_Predictor-Corrector_formulae
https://www.researchgate.net/publication/249655976_A_Matrix_System_for_Computing_the_Coefficients_of_the_Adams_Bashforth-Moulton_Predictor-Corrector_formulae
https://en.wikipedia.org/wiki/State_variable
https://en.wikipedia.org/wiki/State_variable
https://en.wikipedia.org/wiki/State_vector_(navigation)
https://en.wikipedia.org/wiki/State_vector_(navigation)

	Contents
	List of Algorithms
	I Basics of Initial Value Problems
	1 Initial Value Problems
	1.1 Definition
	1.2 Converting Higher-Order IVPs to First-Order IVPs: The Scalar Case
	1.3 Converting Higher-Order IVPs to First-Order IVPs: The Vector Case

	2 Defining Systems Mathematically and Computationally
	2.1 State Vectors and State Space
	2.2 Coupled ODEs
	2.3 Extra Parameters
	2.3.1 Passing Extra Parameters
	2.3.2 Recovering Extra Parameters

	II IVP Solvers and Discretization
	3 IVP Solvers for Vector-Valued Initial Value Problems
	3.1 The General Solution
	3.2 Discretization and Solution Arrays
	3.2.1 Solution Matrix: Row Form
	3.2.2 Solution Matrix: Column Form

	3.3 A Brute Force Solution Method
	3.4 General Form of an IVP solver
	3.5 Propagation Functions
	3.5.1 Single-Step Methods and One-Step Propagation
	3.5.2 Multistep Methods

	3.6 Time Detection Mode
	3.6.1 Integrating Backwards in Time

	3.7 Event Detection Mode
	3.8 Converting Time Detection Mode to Event Detection Mode
	3.8.1 Premature Termination Due to Numerical Issues
	3.8.2 Integrating Backwards in Time

	3.9 IVP Solver Algorithm
	3.9.1 Starting Multistep Solvers
	3.9.2 Expanding Solution Arrays
	3.9.3 0- vs. 1-Based Indexing

	4 Matrix-Valued Initial Value Problems
	4.1 Definition
	4.2 Transforming a Matrix-Valued IVP into a Vector-Valued IVP
	4.3 Obtaining the Matrix Results
	4.4 One-Step Propagation for Matrix-Valued ODEs
	4.5 IVP Solver Algorithm for Matrix-Valued IVPs

	III Fixed-Step Integration Methods
	5 Explicit Runga-Kutta (Single-Step) Methods
	5.1 General Form of the Explicit Runge-Kutta Method
	5.2 Euler Method
	5.3 Runge-Kutta Second-Order Methods
	5.4 Runge-Kutta Third-Order Methods
	5.5 Runge-Kutta Fourth-Order Methods
	5.6 List of Butcher Tableaus
	5.7 Algorithms

	6 Adams-Bashforth (Multistep Predictor) Methods
	6.1 Adams-Bashforth Predictor
	6.2 Adams-Bashforth Methods
	6.3 Algorithms

	7 Adams-Bashforth-Moulton (Multistep Predictor-Corrector) Methods
	7.1 Adams-Moulton Corrector
	7.2 Predictor-Corrector (PECE) Algorithms
	7.3 Adams-Bashforth-Moulton Methods
	7.4 Algorithms

	References

