
Tridiagonal Matrix Algorithm
Tamas Kis | tamas.a.kis@outlook.com | https://tamaskis.github.io

CONTENTS
1 Tridiagonal Matrix Algorithm 2

1.1 Tridiagonal Linear Systems . 2

1.2 Tridiagonal Matrix Algorithm: Vector Implementation . 2

1.3 Tridiagonal Matrix Algorithm: Matrix Implementation . 4

1.3.1 Naive Version . 4

1.3.2 Better Version . 5

1.3.3 Best Version . 6

References 7

Copyright © 2021 Tamas Kis

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated

documentation files (the ”Software”), to deal in the Software without restriction, including without limitation the

rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit

persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the

Software.

THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,

INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT

HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF

CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE

OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

LICENSE

https://tamaskis.github.io

2 Section 1 Tridiagonal Matrix Algorithm

1 TRIDIAGONAL MATRIX ALGORITHM
1.1 Tridiagonal Linear Systems
A tridiagonal linear system is one of the form

Ax = d (1)

where

b1 c1
a1 b2 c2

a2
. . .

. . .

. . .
. . . cn−2

an−2 bn−1 cn−1

an−1 bn

︸ ︷︷ ︸

A

x1

x2

...
xn−1

xn

︸ ︷︷ ︸

x

=

d1
d2
...

dn−1

dn

︸ ︷︷ ︸

d

(2)

and where A ∈ Rn×n and x,d ∈ Rn. Owing to the fact that it only has three nonzero diagonals, the matrix A is

referred to as a tridiagonal matrix1. The tridiagonal vectors a ∈ Rn−1, b ∈ Rn, and c ∈ Rn−1 are defined below

in Eq. (3).

a =

 a1
...

an−1

 , b =

b1...
bn

 , c =

 c1
...

cn−1

 (3)

These tridiagonal vectors form the tridiagonal matrix A, as shown in Eq. (1) [1].

The tridiagonal matrix algorithm (also known as the Thomas algorithm) is an algorithm that can efficiently

solve the tridiagonal linear system for x. There are two general implementations of this algorithm; one whose inputs

are the tridiagonal vectors a, b, and c, and the other which operates directly on the tridiagonal matrix A. We name

these algorithms accordingly:

Algorithm Reason for Name

tridiagonal_vector (Algorithm 1) The tridiagonal vectors, a, b, and c, are input to this function.
tridiagonal_matrix (Algorithm 4) The tridiagonal matrix,A, is input to this function.

Two additional algorithms (Algorithms 2 and 3) are also detailed, but these primarily serve as stepping stones towards

developing Algorithm 4.

1.2 Tridiagonal Matrix Algorithm: Vector Implementation
The tridiagonal matrix algorithm defined by Algorithm 1 below is adapted from [1, 3, 4].

1 In many references, a tridiagonal matrix is often defined with one of the following two convention:

A =

a1 b1
c1 a2 b2

c2
. . .

. . .

. . .
. . . bn−2

cn−2 an−1 bn−1

cn−1 an

A =

b1 c1
a2 b2 c2

a3
. . .

. . .

. . .
. . . cn−2

an−1 bn−1 cn−1

an bn

The first is typically used when defining a tridiagonal linear system [2], while the second is used almost exclusively when defining the tridiagonal

matrix algorithm [3, 4]. However, for the second convention above, the ai’s range from a2 to an, which is inconvenient from a programming

standpoint; therefore, I defined them here as ranging from a1 to an−1. This convention is also reflected in Algorithms 1, 2, and 3.

1.2 Tridiagonal Matrix Algorithm: Vector Implementation 3

Algorithm 1: tridiagonal_vector
Solves the tridiagonal linear system Ax = d for x using the vector
implementation of the tridiagonal matrix algorithm.

Inputs:
• a ∈ Rn−1 - tridiagonal vector

• b ∈ Rn - tridiagonal vector

• c ∈ Rn−1 - tridiagonal vector

• d ∈ Rn - vector

Procedure:
1. Determine n, given that d ∈ Rn.

2. Preallocate the vector x ∈ Rn.

3. Forward elimination.

for i = 2 to n

w =
ai−1

bi−1

bi = bi − wci−1

di = di − wdi−1

end

4. Backward substitution.

xn =
dn
bn

for i = n− 1 to 1 by −1

xi =
di − cixi+1

bi
end

5. Solution of tridiagonal linear system.

return x

Outputs:
• x ∈ Rn - solution of the tridiagonal linear system Ax = d

Note:
• The tridiagonal matrix (A) for the tridiagonal linear system (Ax = d) is defined in

terms of the tridiagonal vectors (a, b, and c) as

A =

b1 c1
a2 b2 c2

a3
. . .

. . .

. . .
. . . cn−2

an−1 bn−1 cn−1

an bn

4 Section 1 Tridiagonal Matrix Algorithm

1.3 Tridiagonal Matrix Algorithm: Matrix Implementation
The tridiagonal matrix algorithm essentially takes the tridiagonal vector algorithm from Section 1.2 and adapts it to

the case where we input the tridiagonal matrix (A) instead of the tridiagonal vectors (a, b, and c). The algorithms

presented in Sections 1.3.1 and 1.3.2 are stepping stones towards the shortest implementation (i.e. the own that should

actually be implemented in code) presented in Section 1.3.3.

1.3.1 Naive Version

The implementation of the tridiagonal matrix algorithm provided by Algorithm 2 is a rather naive one where we extract

the tridiagonal vectors (a, b, and c) one-by-one from the tridiagonal matrix A.

Algorithm 2: tridiagonal_matrix_naive
Solves the tridiagonal linear system Ax = d for x using the matrix
implementation of the tridiagonal matrix algorithm (naive version).

Inputs:
• A ∈ Rn×n - tridiagonal matrix

• d ∈ Rn - vector

Procedure:
1. Determine n, given that d ∈ Rn.

2. Preallocate the vectors a ∈ Rn−1, b ∈ Rn, c ∈ Rn−1, and x ∈ Rn.

3. Extract a fromA.

for i = 2 to n

ai−1 = Ai,i−1

end

4. Extract b fromA.

for i = 1 to n

bi = Ai,i

end

5. Extract c fromA.

for i = 2 to n

ci−1 = Ai−1,i

end

6. Forward elimination.

for i = 2 to n

w =
ai−1

bi−1

bi = bi − wci−1

di = di − wdi−1

end

1.3 Tridiagonal Matrix Algorithm: Matrix Implementation 5

7. Backward substitution.

xn =
dn
bn

for i = n− 1 to 1 by −1

xi =
di − cixi+1

bi
end

8. Solution of tridiagonal linear system.

return x

Outputs:
• x ∈ Rn - solution of the tridiagonal linear system Ax = d

1.3.2 Better Version

We can save some computational effort by reducing the number of for loops in Algorithm 2. For smaller systems, this

doesn’t make a huge impact, but for larger systems, it can halve the time it takes to solve. We can note that four of

the loops go “forward” in i, so we can combine them (with the caveat that we must extract b1 separately since its loop
starts from 1 and not 2). Defining this “better” algorithm,

Algorithm 3: tridiagonal_matrix_better
Solves the tridiagonal linear system Ax = d for x using the matrix
implementation of the tridiagonal matrix algorithm (better version).

Inputs:
• A ∈ Rn×n - tridiagonal matrix

• d ∈ Rn - vector

Procedure:
1. Determine n, given that d ∈ Rn.

2. Preallocate the vectors a ∈ Rn−1, b ∈ Rn, c ∈ Rn−1, and x ∈ Rn.

3. Extract first element of b fromA.

b1 = A1,1

4. Forward loop.

for i = 2 to n

6 Section 1 Tridiagonal Matrix Algorithm

(a) Extract relevant elements of a, b, and c fromA.

ai−1 = Ai,i−1

bi = Ai,i

ci−1 = Ai−1,i

(b) Forward elimination.

w =
ai−1

bi−1

bi = bi − wci−1

di = di − wdi−1

end

5. Backward loop (backward substitution).

xn =
dn
bn

for i = n− 1 to 1 by −1

xi =
di − cixi+1

bi
end

6. Solution of tridiagonal linear system.

return x

Outputs:
• x ∈ Rn - solution of the tridiagonal linear system Ax = d

1.3.3 Best Version

Finally, instead of defining/preallocating the vectors a, b, and c, we can access the elements of A directly. We refer

to this as the “best” implementation; it is best in the sense that it requires the least lines of code. It is also generally

faster than the implementation presented in Section 1.3.2.

Algorithm 4: tridiagonal_matrix
Solves the tridiagonal linear system Ax = d for x using the matrix
implementation of the tridiagonal matrix algorithm.

Inputs:
• A ∈ Rn×n - tridiagonal matrix

• d ∈ Rn - vector

Procedure:
1. Determine n, given that d ∈ Rn.

2. Preallocate the vector x ∈ Rn.

3. Forward elimination.

1.3 Tridiagonal Matrix Algorithm: Matrix Implementation 7

for i = 2 to n

w =
Ai,i−1

Ai−1,i−1

Ai,i = Ai,i − wAi−1,i

di = di − wdi−1

end

4. Backward substitution.

xn =
dn
An,n

for i = n− 1 to 1 by −1

xi =
di −Ai,i+1xi+1

Ai,i

end

5. Solution of tridiagonal linear system.

return x

Outputs:
• x ∈ Rn - solution of the tridiagonal linear system Ax = d

8 REFERENCES

REFERENCES
[1] James Hateley. Linear Systems of Equations and Direct Solvers. MATH 3620 Course Reader (Vanderbilt Uni-

versity). 2019.

[2] Tridiagonal matrix algorithm. Wikipedia. Accessed: December 14, 2021. URL: https://en.wikipedia.
org/wiki/Tridiagonal_matrix.

[3] Tridiagonal matrix algorithm. Wikipedia. Accessed: January 9, 2021. URL: https://en.wikipedia.org/
wiki/Tridiagonal_matrix_algorithm.

[4] Tridiagonal matrix algorithm – TDMA (Thomas algorithm). CFD Online. Accessed: January 9, 2021. URL:

https://www.cfd-online.com/Wiki/Tridiagonal_matrix_algorithm_-_TDMA_(Thomas_
algorithm).

https://en.wikipedia.org/wiki/Tridiagonal_matrix
https://en.wikipedia.org/wiki/Tridiagonal_matrix
https://en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm
https://en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm
https://www.cfd-online.com/Wiki/Tridiagonal_matrix_algorithm_-_TDMA_(Thomas_algorithm)
https://www.cfd-online.com/Wiki/Tridiagonal_matrix_algorithm_-_TDMA_(Thomas_algorithm)

	1 Tridiagonal Matrix Algorithm
	1.1 Tridiagonal Linear Systems
	1.2 Tridiagonal Matrix Algorithm: Vector Implementation
	1.3 Tridiagonal Matrix Algorithm: Matrix Implementation
	1.3.1 Naive Version
	1.3.2 Better Version
	1.3.3 Best Version

	References

