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1 TRIDIAGONAL MATRIX ALGORITHM
1.1 Tridiagonal Linear Systems
A tridiagonal linear system is one of the form

Ax = d (1)

where 
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and where A ∈ Rn×n and x,d ∈ Rn. Owing to the fact that it only has three nonzero diagonals, the matrix A is

referred to as a tridiagonal matrix1. The tridiagonal vectors a ∈ Rn−1, b ∈ Rn, and c ∈ Rn−1 are defined below

in Eq. (3).
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These tridiagonal vectors form the tridiagonal matrix A, as shown in Eq. (1) [1].

The tridiagonal matrix algorithm (also known as the Thomas algorithm) is an algorithm that can efficiently

solve the tridiagonal linear system for x. There are two general implementations of this algorithm; one whose inputs

are the tridiagonal vectors a, b, and c, and the other which operates directly on the tridiagonal matrix A. We name

these algorithms accordingly:

Algorithm Reason for Name

tridiagonal_vector (Algorithm 1) The tridiagonal vectors, a, b, and c, are input to this function.
tridiagonal_matrix (Algorithm 4) The tridiagonal matrix,A, is input to this function.

Two additional algorithms (Algorithms 2 and 3) are also detailed, but these primarily serve as stepping stones towards

developing Algorithm 4.

1.2 Tridiagonal Matrix Algorithm: Vector Implementation
The tridiagonal matrix algorithm defined by Algorithm 1 below is adapted from [1, 3, 4].

1 In many references, a tridiagonal matrix is often defined with one of the following two convention:

A =



a1 b1
c1 a2 b2

c2
. . .

. . .

. . .
. . . bn−2

cn−2 an−1 bn−1

cn−1 an


A =



b1 c1
a2 b2 c2

a3
. . .

. . .

. . .
. . . cn−2

an−1 bn−1 cn−1

an bn


The first is typically used when defining a tridiagonal linear system [2], while the second is used almost exclusively when defining the tridiagonal

matrix algorithm [3, 4]. However, for the second convention above, the ai’s range from a2 to an, which is inconvenient from a programming

standpoint; therefore, I defined them here as ranging from a1 to an−1. This convention is also reflected in Algorithms 1, 2, and 3.
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Algorithm 1: tridiagonal_vector
Solves the tridiagonal linear system Ax = d for x using the vector
implementation of the tridiagonal matrix algorithm.

Inputs:
• a ∈ Rn−1 - tridiagonal vector

• b ∈ Rn - tridiagonal vector

• c ∈ Rn−1 - tridiagonal vector

• d ∈ Rn - vector

Procedure:
1. Determine n, given that d ∈ Rn.

2. Preallocate the vector x ∈ Rn.

3. Forward elimination.

for i = 2 to n

w =
ai−1

bi−1

bi = bi − wci−1

di = di − wdi−1

end

4. Backward substitution.

xn =
dn
bn

for i = n− 1 to 1 by −1

xi =
di − cixi+1

bi
end

5. Solution of tridiagonal linear system.

return x

Outputs:
• x ∈ Rn - solution of the tridiagonal linear system Ax = d

Note:
• The tridiagonal matrix (A) for the tridiagonal linear system (Ax = d) is defined in

terms of the tridiagonal vectors (a, b, and c) as

A =



b1 c1
a2 b2 c2
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1.3 Tridiagonal Matrix Algorithm: Matrix Implementation
The tridiagonal matrix algorithm essentially takes the tridiagonal vector algorithm from Section 1.2 and adapts it to

the case where we input the tridiagonal matrix (A) instead of the tridiagonal vectors (a, b, and c). The algorithms

presented in Sections 1.3.1 and 1.3.2 are stepping stones towards the shortest implementation (i.e. the own that should

actually be implemented in code) presented in Section 1.3.3.

1.3.1 Naive Version

The implementation of the tridiagonal matrix algorithm provided by Algorithm 2 is a rather naive one where we extract

the tridiagonal vectors (a, b, and c) one-by-one from the tridiagonal matrix A.

Algorithm 2: tridiagonal_matrix_naive
Solves the tridiagonal linear system Ax = d for x using the matrix
implementation of the tridiagonal matrix algorithm (naive version).

Inputs:
• A ∈ Rn×n - tridiagonal matrix

• d ∈ Rn - vector

Procedure:
1. Determine n, given that d ∈ Rn.

2. Preallocate the vectors a ∈ Rn−1, b ∈ Rn, c ∈ Rn−1, and x ∈ Rn.

3. Extract a fromA.

for i = 2 to n

ai−1 = Ai,i−1

end

4. Extract b fromA.

for i = 1 to n

bi = Ai,i

end

5. Extract c fromA.

for i = 2 to n

ci−1 = Ai−1,i

end

6. Forward elimination.

for i = 2 to n

w =
ai−1

bi−1

bi = bi − wci−1

di = di − wdi−1

end
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7. Backward substitution.

xn =
dn
bn

for i = n− 1 to 1 by −1

xi =
di − cixi+1

bi
end

8. Solution of tridiagonal linear system.

return x

Outputs:
• x ∈ Rn - solution of the tridiagonal linear system Ax = d

1.3.2 Better Version

We can save some computational effort by reducing the number of for loops in Algorithm 2. For smaller systems, this

doesn’t make a huge impact, but for larger systems, it can halve the time it takes to solve. We can note that four of

the loops go “forward” in i, so we can combine them (with the caveat that we must extract b1 separately since its loop
starts from 1 and not 2). Defining this “better” algorithm,

Algorithm 3: tridiagonal_matrix_better
Solves the tridiagonal linear system Ax = d for x using the matrix
implementation of the tridiagonal matrix algorithm (better version).

Inputs:
• A ∈ Rn×n - tridiagonal matrix

• d ∈ Rn - vector

Procedure:
1. Determine n, given that d ∈ Rn.

2. Preallocate the vectors a ∈ Rn−1, b ∈ Rn, c ∈ Rn−1, and x ∈ Rn.

3. Extract first element of b fromA.

b1 = A1,1

4. Forward loop.

for i = 2 to n
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(a) Extract relevant elements of a, b, and c fromA.

ai−1 = Ai,i−1

bi = Ai,i

ci−1 = Ai−1,i

(b) Forward elimination.

w =
ai−1

bi−1

bi = bi − wci−1

di = di − wdi−1

end

5. Backward loop (backward substitution).

xn =
dn
bn

for i = n− 1 to 1 by −1

xi =
di − cixi+1

bi
end

6. Solution of tridiagonal linear system.

return x

Outputs:
• x ∈ Rn - solution of the tridiagonal linear system Ax = d

1.3.3 Best Version

Finally, instead of defining/preallocating the vectors a, b, and c, we can access the elements of A directly. We refer

to this as the “best” implementation; it is best in the sense that it requires the least lines of code. It is also generally

faster than the implementation presented in Section 1.3.2.

Algorithm 4: tridiagonal_matrix
Solves the tridiagonal linear system Ax = d for x using the matrix
implementation of the tridiagonal matrix algorithm.

Inputs:
• A ∈ Rn×n - tridiagonal matrix

• d ∈ Rn - vector

Procedure:
1. Determine n, given that d ∈ Rn.

2. Preallocate the vector x ∈ Rn.

3. Forward elimination.
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for i = 2 to n

w =
Ai,i−1

Ai−1,i−1

Ai,i = Ai,i − wAi−1,i

di = di − wdi−1

end

4. Backward substitution.

xn =
dn
An,n

for i = n− 1 to 1 by −1

xi =
di −Ai,i+1xi+1

Ai,i

end

5. Solution of tridiagonal linear system.

return x

Outputs:
• x ∈ Rn - solution of the tridiagonal linear system Ax = d
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