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2 Section 1 Tridiagonal Matrix Algorithm (Thomas Algorithm)

1 TRIDIAGONALMATRIXALGORITHM (THOMASAL-
GORITHM)

1.1 Tridiagonal Linear Systems
A tridiagonal linear system is one of the form

Ax = d (1)

where 
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and where A ∈ Rn×n and x,d ∈ Rn. Owing to the fact that it only has three nonzero diagonals, the matrix A is

referred to as a tridiagonal matrix1.

The tridiagonal matrix algorithm (also known as the Thomas algorithm) is an algorithm that can efficiently

solve the tridiagonal linear system for x. In this document, we introduce three different ways2 to implement the

tridiagonal matrix algorithm (Algorithms 1, 2, and 3). The first two implementations use three vectors, a, b, and c,
which we define as [1]
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 (3)

1.2 Slower Implementation
The tridiagonal matrix algorithm is shown below [1, 3, 4].

1 In many references, a tridiagonal matrix is often defined with one of the following two convention:
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The first is typically used when defining a tridiagonal linear system [2], while the second is used almost exclusively when defining the tridiagonal

matrix algorithm [3, 4]. However, for the second convention above, the ai’s range from a2 to an, which is inconvenient from a programming

standpoint; therefore, I defined them here as ranging from a1 to an−1. This convention is also reflected in Algorithms 1 and 2.
2 The tridiagonal function implements Algorithm 2.
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Algorithm 1: tridiagonal_slower
Tridiagonal matrix algorithm (Thomas algorithm) (slower version).

Given:
• A ∈ Rn×n - tridiagonal matrix

• d ∈ Rn - vector

Note:
• A and d define the tridiagonal linear system Ax = d.

Procedure:
1. Determine n, given that d ∈ Rn.

2. Preallocate vectors of size n× 1 to store b and x.
3. Preallocate vectors of size (n− 1)× 1 to store a and c.
4. Extract a fromA.

for i = 2 to n

ai−1 = Ai,i−1

end

5. Extract b fromA.

for i = 1 to n

bi = Ai,i

end

6. Extract c fromA.

for i = 2 to n

ci−1 = Ai−1,i

end

7. Forward elimination.

for 2 = 1 to n

w =
ai−1

bi−1

bi = bi − wci−1

di = di − wdi−1

end

8. Backward substitution.

xn =
dn
bn

for i = n− 1 to 1 by −1

xi =
di − cixi+1

bi
end
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Return:
• x ∈ Rn - solution of the tridiagonal linear system Ax = d

1.3 Faster Implementation
We can save some computational effort by reducing the number of for loops in Algorithm 1. For smaller systems, this

doesn’t make a huge impact, but for larger systems, it can halve the time it takes to solve. We can note that four of

the loops go “forward” in i, so we can combine them (with the caveat that we must extract b1 separately since its loop
starts from 1 and not 2). Defining this “faster” algorithm,

Algorithm 2: tridiagonal
Tridiagonal matrix algorithm (Thomas algorithm).

Given:
• A ∈ Rn×n - tridiagonal matrix

• d ∈ Rn - vector

Note:
• A and d define the tridiagonal linear system Ax = d.

Procedure:
1. Determine n, given that d ∈ Rn.

2. Preallocate vectors of size n× 1 to store b and x.
3. Preallocate vectors of size (n− 1)× 1 to store a and c.
4. Extract first element of b fromA.

b1 = A1,1

5. Forward loop.

for i = 2 to n

(a) Extract relevant elements of a, b, and c fromA.

ai−1 = Ai,i−1

bi = Ai,i

ci−1 = Ai−1,i

(b) Forward elimination.

w =
ai−1

bi−1

bi = bi − wci−1

di = di − wdi−1

end

6. Backward loop (backward substitution).

xn =
dn
bn
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for i = n− 1 to 1 by −1

xi =
di − cixi+1

bi
end

Return:
• x ∈ Rn - solution of the tridiagonal linear system Ax = d

1.4 Shortest Implementation
Finally, instead of defining/preallocating the vectors a, b, and c, we can access the elements of A directly. We refer

to this as the “shortest” implementation since it results in the least lines of code.

Algorithm 3: tridiagonal_shortest
Tridiagonal matrix algorithm (Thomas algorithm) (shortest imple-
mentation).

Given:
• A ∈ Rn×n - tridiagonal matrix

• d ∈ Rn - vector

Note:
• A and d define the tridiagonal linear system Ax = d.

Procedure:
1. Determine n, given that d ∈ Rn.

2. Preallocate a vector of size n× 1 to store x.
3. Forward elimination.

for i = 2 to n

w =
Ai,i−1

Ai−1,i−1

Ai,i = Ai,i − wAi−1,i

di = di − wdi−1

end

4. Backward substitution.

xn =
dn
An,n

for i = n− 1 to 1 by −1

xi =
di −Ai,i+1xi+1

Ai,i

end

Return:
• x ∈ Rn - solution of the tridiagonal linear system Ax = d
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For smaller systems, this implementation can actually be the fastest, since you only have to preallocate one

vector (x) instead of four (x, a, b, and c). However, for large systems, it is costlier to traverse the matrixA during the

substitution process than it is to preallocate, define, and traverse the vectors a, b, and c.
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