chessian
Hessian of a multivariate, scalar-valued function using the central difference approximation.
Back to Numerical Differentiation Toolbox Contents.
Contents
Syntax
H = chessian(f,x0) H = chessian(f,x0,h)
Description
H = chessian(f,x0) numerically evaluates the Hessian of
with respect to
at
using the central difference approximation with a default relative step size of
, where
is the machine zero.
H = chessian(f,x0,h) numerically evaluates the Hessian of
with respect to
at
using the central difference approximation with a user-specified relative step size
.
Input/Output Parameters
| Variable | Symbol | Description | Format | |
| Input | f | multivariate, scalar-valued function ( |
1×1 function_handle |
|
| x0 | evaluation point | n×1 double |
||
| h | (OPTIONAL) relative step size (defaults to $h=\varepsilon^{1/3}$) | 1×1 double |
||
| Output | H | Hessian of |
n×n double |
Note
- This function requires
evaluations of
.
Example
Approximate the Hessian of
at
using the chessian function, and compare the result to the true result of

Approximating the Hessian,
f = @(x) x(1)^5*x(2)+x(1)*sin(x(2))^3; x0 = [5;8]; H = chessian(f,x0)
H =
1.0e+04 *
2.0000 0.3125
0.3125 -0.0014
Calculating the error,
error = H-[20*5^3*8,5*5^4+3*sin(8)^2*cos(8);5*5^4+3*sin(8)^2*cos(8),...
6*5*sin(8)*cos(8)^2-3*5*sin(8)^3]
error =
1.0e-03 *
0.0072 0.2459
0.2459 0.1293