ihessian
Hessian of a multivariate, scalar-valued function using the complex-step and central difference approximations.
Back to Numerical Differentiation Toolbox Contents.
Contents
Syntax
H = ihessian(f,x0) H = ihessian(f,x0,hi,hc)
Description
H = ihessian(f,x0) numerically evaluates the Hessian of with respect to
at
using a hybrid of complex-step and central difference approximations with default step sizes of
(an absolute step size) and
(a relative step size), respectively, where
is the machine zero.
H = ihessian(f,x0,hi,hc) numerically evaluates the Hessian of with respect to
at
using a hybrid of complex-step and central difference approximations with user-specified step sizes
and
, respectively.
Input/Output Parameters
Variable | Symbol | Description | Format | |
Input | f | multivariate, scalar-valued function ( |
1×1 function_handle |
|
x0 | evaluation point | n×1 double |
||
hi | (OPTIONAL) step size for complex-step approximation (defaults to |
1×1 double |
||
hc | (OPTIONAL) relative step size for central difference approximation (defaults to |
1×1 double |
||
Output | H | Hessian of |
n×n double |
Note
- This function requires
evaluations of
.
Example
Approximate the Hessian of at
using the ihessian function, and compare the result to the true result of
Approximating the Hessian,
f = @(x) x(1)^5*x(2)+x(1)*sin(x(2))^3; x0 = [5;8]; H = ihessian(f,x0)
H = 1.0e+04 * 2.0000 0.3125 0.3125 -0.0014
Calculating the error,
error = H-[20*5^3*8,5*5^4+3*sin(8)^2*cos(8);5*5^4+3*sin(8)^2*cos(8),...
6*5*sin(8)*cos(8)^2-3*5*sin(8)^3]
error = 1.0e-05 * 0.1036 0.0011 0.0011 0.0049